Discontinuity, Nonlinearity, and Complexity
Bifurcations and Phase-space Structures in KCN Molecular System
Discontinuity, Nonlinearity, and Complexity 14(3) (2025) 607--622 | DOI:10.5890/DNC.2025.09.012
F. Revuelta$^{1}$,
F. J. Arranz$^1$,
R. M. Benito$^1$,
F. Borondo$^{2}$
$^1$ Grupo de Sistemas Complejos,
Escuela T'ecnica Superior de Ingenier'i a
Agron'omica, Alimentaria y de
Biosistemas,
Universidad Polit'ecnica de Madrid,
Avenida~Puerta de Hierro 2-4,
28040 Madrid, Spain
%
$^2$ Departamento de Qu'imica,
Universidad Aut'onoma de Madrid,
Cantoblanco, 28049 Madrid, Spain
Download Full Text PDF
Abstract
In this work,
we analyze the evolution of the phase-space structures of KCN molecular system
as a function of the vibrational energy using Lagrangian descriptors.
For low energies,
the motion is mostly regular around the absolute minimum
of the potential energy surface.
As the energy increases,
the phase space combines regions with regular
%motion with regions with
and chaotic motion,
%behaviors,
a difference that is well captured by the Lagrangian descriptors.
%due to the underlying
%homoclinic and heteroclinic tangle.
We show that the dynamics is mostly governed by the invariant manifolds
of the stretch periodic orbits located at the top of one of the
energetic barriers of the system.
Furthermore,
we show a perfect agreement between the bifurcation theory
and the differences observed in the phase-space structures
%shown by Lagrangian descriptors
as the vibrational energy is modified.
%the changes in the energy are reponsible for bifurcations in the
%periodic orbits of the system, a fact that modifies
%the phase space dramatically.
The accuracy of our calculations is also assessed
by explicit comparison with the invariant manifolds computed
using linear dynamics.
References
-
[1]  |
Cvitanović, P., Artuso, R., Mainieri, R., Tanner, G., and Vattay, G. (2016), Chaos: Classical and Quantum, Niels Bohr Institute: Copenhagen.
|
-
[2]  |
Celletti, A. (2010), Stability and Chaos in Celestial Mechanics, Springer Praxis Books, 1st ed., Springer-Verlag: Berlin, Heidelberg, New York.
|
-
[3]  |
Katok, A. and Hasselblatt, B. (1995), Introduction to Modern Theory of Dynamical Systems, Cambridge University Press: Cambridge.
|
-
[4]  |
Hale, J. and Koçak, H. (1991), Dynamics and Bifurcations, Springer-Verlag: New York.
|
-
[5]  |
Lakshmanan, M. (1996), Chaos in Nonlinear Oscillators: Controlling and Synchronization, World Scientific Series on Nonlinear Science Series A: Volume 13, World Scientific: Singapore.
|
-
[6]  |
Kambe, T. (2004), Geometrical Theory of Dynamical Systems and Fluid Flows, Advances Series in Nonlinear Mechanics, 23, World Scientific: Singapore.
|
-
[7]  |
Lichtenberg, A.J. and Lieberman, M.A. (2010), Regular and Stochastic Motion, Applied Mathematical Sciences, 38, Springer-Verlag: New York.
|
-
[8]  |
Froeschlé, Cl., Gonczi, R., and Lega, E. (1997), The fast Lyapunov indicator: a simple tool to detect weak chaos. Application to the structure of the main asteroidal belt, Planetary and Space Science, 45, 881-886.
|
-
[9]  |
Froeschlé, C. and Lega, E. (2000), On the structure of symplectic mappings. The Fast Lyapunov indicator: a very sensitive tool, Celestial Mechanics and Dynamical Astronomy, 78(1), 167–195.
|
-
[10]  |
Skokos, C. (2001), Alignment indices: a new, simple method for determining the ordered or chaotic nature of orbits, Journal of Physics A, 34(47), 10029-10043.
|
-
[11]  |
Benitez, P., Losada, J.C., Benito, R.M., and Borondo, F. (2015), Using the small alignment index chaos indicator to characterize the vibrational dynamics of a molecular system: LiNC-LiCN, Physical Review E, 92, 042918.
|
-
[12]  |
Cincotta, P.M. and Simó, C. (2000), Simple tools to study global dynamics in non-axisymmetric galactic potentials - I, Astronomy and Astrophysics Supplement Series, 147(2), 205-228.
|
-
[13]  |
Cincotta, P.M., Giordano, C., and Simó, C. (2003), Phase space structure of multi-dimensional systems by means of the mean exponential growth factor of nearby orbits, Physica D, 182(3), 151-178.
|
-
[14]  |
Jiménez-Madrid, J.A. and Mancho, A.M. (2009), Distinguished trajectories in time-dependent vector fields, Chaos, 19(1), 013111.
|
-
[15]  |
Lopesino, C., Balibrea-Iniesta, F., Wiggins, S., and Mancho, A.M. (2015), Lagrangian descriptors for two-dimensional, area-preserving, autonomous and nonautonomous maps, Communications in Nonlinear Science and Numerical Simulation, 27(1), 40-51.
|
-
[16]  |
Mancho, A.M., Wiggins, S., Curbelo, J., and Mendoza, C. (2013), Lagrangian descriptors: A method for revealing phase space structures of general time-dependent dynamical systems, Communications in Nonlinear Science and Numerical Simulation, 18(12), 3530–3557.
|
-
[17]  |
Mendoza, C. and Mancho, A.M. (2010), Hidden geometry of ocean flows, Physical Review Letters, 105, 038501.
|
-
[18]  |
Darwish, A., Norouzi, S., Di Labbio, G., and Kadem, L. (2021), Extracting Lagrangian coherent structures in cardiovascular flows using Lagrangian descriptors, Physical Fluids, 33(11), 111707.
|
-
[19]  |
Craven, G.T. and Hernandez, R. (2015), Lagrangian descriptors of thermalized transition states on time-varying energy surfaces, Physical Review Letters, 115, 148301.
|
-
[20]  |
Pandey, P. and Keshavamurthy, S. (2022), Influence of low frequency modes on dynamical concertedness in double proton transfer dynamics, Communications in Nonlinear Science and Numerical Simulation, 109, 106326.
|
-
[21]  |
Forlevesi, M.D., de Carvalho, R., and de Lima, Emanuel F. (2023), Lagrangian descriptor and escape time as tools to investigate the dynamics of laser-driven polar molecules, Physical Review E, 107, 024209.
|
-
[22]  |
Revuelta, F., Benito, R.M., and Borondo, F. (2019), Unveiling the chaotic structure in phase space of molecular systems using Lagrangian descriptors, Physical Review E, 99, 032221.
|
-
[23]  |
Revuelta, F., Benito, R.M., and Borondo, F. (2021), Identification of the invariant manifolds of the LiCN molecule using Lagrangian descriptors, Physical Review E, 104, 044210.
|
-
[24]  |
Revuelta, F., Arranz, F.J., Benito, R.M., and Borondo, F. (2023), Unraveling the highly nonlinear dynamics of KCN molecular system using Lagrangian descriptors, Communications in Nonlinear Science and Numerical Simulation, 123, 107265.
|
-
[25]  |
Carlo, G.G. and Borondo, F. (2020), Lagrangian descriptors for open maps, Physical Review E, 101, 022208.
|
-
[26]  |
Simile Baroni, R. and de Carvalho, R. Egydio (2024), Lagrangian descriptors: The shearless curve and the shearless attractor, Physical Review E, 109, 024202.
|
-
[27]  |
Zimper, S., Ngapasare, A., Hillebrand, M., Katsanikas, M., Wiggins, S.R., and Skokos, Ch. (2023), Performance of chaos diagnostics based on Lagrangian descriptors. Application to the 4D standard map, Physica D, 453, 133833.
|
-
[28]  |
Carlo, G.G., Montes, J., and Borondo, F. (2022), Lagrangian descriptors for the Bunimovich stadium billiard, Physical Review E, 105, 014208.
|
-
[29]  |
Arnaut, L. (2021), Chemical Kinetics, Elsevier: Amsterdam.
|
-
[30]  |
Wales, D.J. (2003), Energy Landscapes, Cambridge University Press: Cambridge.
|
-
[31]  |
Atkins, P., de Paula, J., and Keeler, J. (2006), Physical Chemistry, 11th ed., Oxford University Press: Oxford.
|
-
[32]  |
Ma, J. (2005), Usefulness and Limitations of Normal Mode Analysis in Modeling Dynamics of Biomolecular Complexes, Structure, 13(3), 373-380.
|
-
[33]  |
Marx, D. and Hutter, J. (2009), Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods, Cambridge University Press: Cambridge.
|
-
[34]  |
Uzer, T., Jaffé, C., Palacián, J., Yanguas, P., and Wiggins, S. (2002), The geometry of reaction dynamics, Nonlinearity, 15(4), 957-962.
|
-
[35]  |
Birkhoff, G.D. (1913), Proof of Poincaré's geometric theorem, Transactions of the American Mathematical Society, 14, 14-22.
|
-
[36]  |
Arnold, I., Gusein-Sade, S.M., and Varchenko, A.N. (2006), Mathematical Aspects of Classical and Celestial Mechanics, Springer-Verlag: Berlin, Heidelberg.
|
-
[37]  |
Párraga, H., Arranz, F.J., Benito, R.M., and Borondo, F. (2013), Ab Initio potential energy surface for the highly nonlinear dynamics of the KCN molecule, Journal of Chemical Physics, 139(19), 194304.
|
-
[38]  |
Borondo, F., Fontich, E., and Martín, P. (2024), Chaotic scattering of He atoms off a Cu surface with corrugated Morse potential, arXiv preprint available at https://arxiv.org/abs/2401.05795.
|
-
[39]  | Barrabés, E., Borondo, F., Fontich, E., Martín, P., and Ollé, M. (2024), A numerical study of the scattering in the He-Cu model with a Morse potential: Parabolic manifolds and exponentially small phenomena, Communications in Nonlinear Science and Numerical Simulation,
139, 108260.
|
-
[40]  |
Párraga, H., Arranz, F.J., Benito, R.M., and Borondo, F. (2018), Above saddle-point regions of order in a sea of chaos in the vibrational dynamics of KCN, Journal of Physical Chemistry A, 122, 3433-3441.
|