Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


A Remarkable Insight in the Theory of Fractals Confirmed Through Counterexamples

Discontinuity, Nonlinearity, and Complexity 14(3) (2025) 451--468 | DOI:10.5890/DNC.2025.09.001

Song-Il Ri$^1$, Vasileios Drakopoulos$^2$, Yong-Nam So$^3$, Gol Kim$^1$

$^1$ Department of Mathematics, University of Science, Pyongyang, D.P.R. of Korea

$^2$ Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece

$^3$ Faculty of Mathematics, Kim Il Sung University Pyongyang, DPR Korea

Download Full Text PDF

 

Abstract

Based on the mutual relations among the well-known Banach contraction mapping (1922), Rakotch contraction mapping (1962), Kannan contraction mapping (1968), Bryant contraction mapping (1968), and Reich contraction mapping (1971) - particularly considering corresponding examples, purposeful and deliberate counterexamples, and the remarkable analytic properties of the Bryant contraction mapping, which is the most explicit and simple generalisation of the Banach contraction mapping - we confirm, for the first time, that only a few contractive mappings, such as the Rakotch contraction mapping, can generate fractals. At the same time, we establish that one cannot always generate fractals using various generalised Banach contraction mappings in a standard Euclidean metric space, as most of the analytic properties of these contraction mappings on the base space are not necessarily inherited by the mappings they generate on the fractal space.

References

  1. [1]  Rakotch, E. (1962), A note on contractive mappings, Proceedings of the American Mathematical Society, 13(2), 459-465.
  2. [2]  Kannan, R. (1968), Some results on fixed points, The American Mathematical Monthly, 60, 71-76.
  3. [3]  Reich, S. (1971), Some remarks concerning contraction mappings, Canadian Mathematical Bulletin, 14, 121–124.
  4. [4]  Bryant, V.W. (1968), A remark on a fixed-point theorem for iterated mappings, The American Mathematical Monthly, 75, 399-400.
  5. [5]  Janos, L. (1976), On mappings contractive in the sense of kannan, Proceedings of the American Mathematical Society, 61, 171-175.
  6. [6]  Subrahmanyam, P. (1975), Completeness and fixed-points, Monatshefte für Mathematik, 80, 325-330.
  7. [7]  Barnsley, M.F. (1986), Fractal functions and interpolation, Constructive Approximation, 2, 303-329.
  8. [8]  Barnsley, M.F. (2012), Fractals Everywhere, Dover Publications, Inc., 3rd edn.
  9. [9]  Hutchinson, J.E. (1981), Fractals and self similarity, University Mathematics Journal, 30, 713-747.
  10. [10]  Ri, S. (2018), A new idea to construct the fractal interpolation function, Indagationes Mathematicae, 29, 962-971.
  11. [11]  Sahu, D.R., Chakraborty, A., and Dubey, R.P. (2010), K-iterated function system, Fractals, 18, 139-144.
  12. [12]  Van~Dung, N. and Petru\c{s}el, A. (2017), On iterated function systems consisting of kannan maps, reich maps, chatterjea type maps, and related results, Journal of Fixed Point Theory and Applications, 19, 2271-2285.
  13. [13]  Akhmet, M., Fen, M.O., and Alejaily, E.M. (2019), Generation of fractals as Duffing equation orbits, Chaos: An Interdisciplinary Journal of Nonlinear Science, 29, 053113.
  14. [14]  Kansal, A. and Kaur, J. (2010), Sierpinski gasket fractal array antenna, International Journal of Computer Science $\&$ Communication, 1, 133-136.
  15. [15]  Triantakonstantis, D. (2012), Urban growth prediction modelling using fractals and theory of chaos, Open Journal of Civil Engineering, 2, 81-86.
  16. [16]  Akhmet, M., Fen, M.O., and Alejaily, E.M. (2021), Dynamics with fractals, Discontinuity, Nonlinearity, and Complexity, 10, 173-184.
  17. [17]  Singh, S., Prasad, B., and Kumar, A. (2009), Fractals via iterated functions and multifunctions, Chaos, Solitons $\&$ Fractals, 39, 1224-1231.
  18. [18]  Banach, S. (1922), Sur les op{e}rations dans les ensembles abstraits et leur applications aux {e}quations int{e}grales, Fundamenta mathematicae, 3, 133-181.
  19. [19]  Latif, A. (2014), Banach contraction principle and its generalizations. Almezel, S., Ansari, Q.H., and Khamsi, M.A. (eds.), Topics in Fixed Point Theory, 33-64, Springer International Publishing.
  20. [20]  Rhoades, B.E. (1977), A comparison of various definitions of contractive mappings, Transactions of the American Mathematical Society, 226, 257-290.
  21. [21]  Kannan, R. (1969), Some results on fixed points-ii, The American Mathematical Monthly, 76, 405-408.
  22. [22]  Singh, S.P. (1969), Some results on fixed point theorems, Yokohama Mathematical Journal, 17, 61-64.
  23. [23]  Xu, S., Cheng, S., and Zhou, Z. (2015), Reich's iterated function systems and well-posedness via fixed point theory, Fixed Point Theory and Applications, 2015, 71.