Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


Hermite–Hadamard-Mercer's Type Inequalities for ABK-Fractional Integrals via Strong Convexity and its Applications

Discontinuity, Nonlinearity, and Complexity 13(4) (2024) 663--674 | DOI:10.5890/DNC.2024.12.007

Savita Panwar$^1$, Rupakshi Mishra Pandey$^1$, Prakriti Rai$^2$, Sunil Dutt Purohit$^3$, D.L. Suthar$^4$

$^1$ Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida, India

$^2$ Siddharth University, Kapilvastu, Uttar Pradesh India

$^3$ Department of HEAS(Mathematices), Rajasthan Technical University, Kota, India

$^4$ Department of Mathematics, Wollo University, P.O. Box 1145, Dessie, Ethiopia

Download Full Text PDF

 

Abstract

In this article, we present a novel variant of Hermite-Hadamard-Mercer's inequality for strongly convex functions via ABK-fractional integrals and the Jensen-Mercer's inequality. Further, we introduce some Hermite-Hadamard-Mercer's type inequalities for differentiable functions whose absolute value of the derivative is convex. Some fundamental inequalities, like Holder's inequality and Young's inequality, have been used to establish inequalities. Furthermore, we discuss special cases for our main results and obtain the new Hermite-Hadamard-Mercer's inequalities for convex functions using the ABK-fractional Integral Operator. Additionally, some applications for special means are also given.

References

  1. [1]  Polyak, B.T. (1966), Existence theorems and convergence of minimizing sequences for extremal problems with constraints, In Doklady Akademii Nauk, Russian Academy of Sciences, 166(2), 287-290.
  2. [2]  Adil Khan, M., Anwar, S., Khalid, S., and Sayed, Z.M.M.M. (2021), Inequalities of the type Hermite–Hadamard–Jensen–Mercer for strong convexity, Mathematical Problems in Engineering, 2021, 1-16.
  3. [3] Jain, S., Mehrez, K., Baleanu, D., and Agarwal, P. (2019), Certain Hermite–Hadamard inequalities for logarithmically convex functions with applications, Mathematics, 7(2), 163.
  4. [4]  Atangana, A. and Baleanu, D. (2016), New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, arXiv preprint arXiv:1602.03408.
  5. [5]  Miller, K.S. and Ross, B. (1993), An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley \& Sons, Inc., New York.
  6. [6]  Chandola, A., Pandey, R.M., Agarwal, R., and Agarwal, R.P. (2022), Hadamard inequality for $(k - r)$ Riemann-Liouville fractional integral operator via convexity, Progress in Fractional Differentiation and Applications, 8(2), 205-215.
  7. [7]  Chu, H.H., Rashid, S., Hammouch, Z., and Chu, Y.M. (2020), New fractional estimates for Hermite-Hadamard-Mercer's type inequalities, Alexandria Engineering Journal, 59(5), 3079-3089.
  8. [8] Liu, J.B., Butt, S.I., Nasir, J., Aslam, A., Fahad, A., and Soontharanon, J. (2022), Jensen-Mercer variant of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional operator, AIMS Mathematics, 7(2), 2123-2141.
  9. [9] Kashuri, A.R. (2021), Hermite-Hadamard type inequalities for the ABK-fractional integrals, Journal of Computational Analysis and Applications, 29, 309-326.
  10. [10]  Hardy, G.H., Littlewood, J.E., and Pólya, G. (1952), Inequalities. 2d ed. Cambridge, at the University Press.
  11. [11] Hadamard, J. (1893), Étude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann, Journal de Mathématiques Pures et Appliquées, 9, 171-216.
  12. [12] Merentes, N. and Nikodem, K. (2010), Remarks on strongly convex functions, Aequationes Mathematicae, 80(1), 193-199.
  13. [13] Mercer, A.M. (2003), A variant of Jensen's inequality, Journal of Inequalities in Pure and Applied Mathematics, 4(4), 1-2.
  14. [14] Moradi, H.R., Omidvar, M.E., Adil Khan, M., and Nikodem, K. (2018), Around Jensen's inequality for strongly convex functions, Aequationes Mathematicae, 92(1), 25-37.
  15. [15] Prudnikov, A.P., Brychkov, I.A., Bryčkov, J.A., and Marichev, O.I. (1986), Integrals and Series: Special Functions CRC press.
  16. [16] Zhao, D., Ali, M.A., Kashuri, A., and Budak, H. (2020), Generalized fractional integral inequalities of Hermite–Hadamard type for harmonically convex functions, Advances in Difference Equations, (1), 1-4.