Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


Well-Posedness and Analyticity of Solutions to the Parabolic-Elliptic System of Drift-Diffusion Type in Fourier-Besov Spaces with Variable Exponents

Discontinuity, Nonlinearity, and Complexity 13(4) (2024) 653--662 | DOI:10.5890/DNC.2024.12.006

Achraf Azanzal, Chakir Allalou, Said Melliani

Laboratory LMACS, FST, Sultan Moulay Slimane University, Beni Mellal, 23000, Morocco

Download Full Text PDF

 

Abstract

In this paper we study the Cauchy problem of the Debye-Hückel system with initial data in variable Fourier-Besov spaces. By using littlewood-Paley decomposition, we obtain the global well-posedness result for small initial data belong to critical variable exponent Fourier-Besov spaces. Moreover, we get the analyticity of global solutions.

References

  1. [1]  Karch, G. (1999), Scaling in nonlinear parabolic equations, Journal of Mathematical Analysis and Applications, 234, 534-558.
  2. [2]  Zhao, J., Qiao, L., and Cui, S. (2013), Existence of solutions for the Debye-Hückel system with low regularity initial data, Acta Applicandae Mathematicae, 125(1), 1-10.
  3. [3]  Kurokiba, M. and Takayoshi, O. (2008), Well-posedness for the drift-diffusion system in Lp arising from the semiconductor device simulation, Journal of Mathematical Analysis and Applications 342(2), 1052-1067.
  4. [4]  Azanzal, A., Abbassi, A., and Allalou, C. (2021), Existence of solutions for the Debye-H\"uckel system with low regularity initial data in critical Fourier-Besov-Morrey spaces, Nonlinear Dynamics and Systems Theory, 21, 367-380.
  5. [5]  Azanzal, A., Allalou, C., and Abbassi, A. (2021), Well-posedness and analyticity for generalized Navier-Stokes equations in critical Fourier-Besov-Morrey spaces, Journal of Nonlinear Functional Analysis, 2021, 24.
  6. [6]  Azanzal, A., Abbassi, A., and Allalou, C. (2021), On the Cauchy problem for the fractional drift-diffusion system in critical Fourier-Besov-Morrey spaces, International Journal On Optimization and Applications, 1, 28.
  7. [7]  Azanzal, A., Allalou, C., and Melliani, S. (2021), Well-posedness and blow-up of solutions for the 2D dissipative quasi-geostrophic equation in critical Fourier-Besov-Morrey spaces, Journal of Elliptic and Parabolic Equations, 8(1), 23-48.
  8. [8]  Zhao, J. (2017), Gevrey regularity of mild solutions to the parabolic–elliptic system of drift-diffusion type in critical Besov spaces, Journal of Mathematical Analysis and Applications, 448, 1265-1280.
  9. [9]  Cruz-Uribe, D. and Fiorenza, A. (2013), Variable Lebesgue Spaces, Foundations and Harmonic Analysis, In: Applied and Numerical Harmonic Analysis. Birkhauser/Springer, Heidelberg.
  10. [10]  Almeida, M.F., Ferreira, L.C.F., and Lima, L.S.M. (2017), Uniform global well-posedness of the Navier–Stokes– Coriolis system in a new critical space, Mathematische Zeitschrift, 287, 735–750.
  11. [11]  Azanzal, A., Allalou, C., and Melliani, S. (2022), Well-posedness, analyticity and time decay of the 3D fractional magneto-hydrodynamics equations in critical Fourier-Besov-Morrey spaces with variable exponent, Journal of Elliptic and Parabolic Equations, 8(2), 723-742.
  12. [12]  Zhou, X. and Xiao, W. (2018), Algebra properties in fourier-besov spaces and their applications, Journal of Function Spaces, 2018, 1-10.
  13. [13]  Cui, Y. and Xiao, W. (2020), Gevrey regularity and time decay of the fractional Debye-Hückel system in Fourier-Besov spaces, Bulletin of the Korean Mathematical Society, 57(6), 1393-1408.