Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


A New Dynamical System to Study the Spread of SARS -COV 2 based on Data from Greece

Discontinuity, Nonlinearity, and Complexity 13(3) (2024) 507--516 | DOI:10.5890/DNC.2024.09.009

Vasileios Vachtsevanos, Efthymia Meletlidou

Section of Astrophysics, Astronomy and Mechanics , Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece

Download Full Text PDF

 

Abstract

The COVID-19 pandemic has troubled both medicinal and scientific personnel for more than two years. This epidemic has proven resilient to medical and social measures undertaken worldwide. Modeling a pandemic of this size is an arduous task, partly because of the virus' mutability and partly due to the diverse and complex ways that each government is trying to reduce the effects of the pandemic, by using different measures with a varying degree of success. In this work, we will try to design an adaptable dynamical system, which can be adjusted to make predictions for different populations and different measures to fight the pandemic. Additionally, we will present a novel idea for examining whether an epidemiological system, i.e., the epidemic will end or not in-dependently of the system's internal characteristics.

References

  1. [1]  Dietz, K. and Heesterbeek, J.A.P. (2002), Daniel Bernoulli's epidemiological model revisited, Mathematical Biosciences, 180(1–2), 1–21. doi:10.1016/s0025-5564(02)00122-0.
  2. [2]  Kermack, W.O. and McKendrick, A.G. (1927), A seminal contribution to the mathematical theory of epidemics, A Historical Introduction to Mathematical Modeling of Infectious Diseases, 59–87. doi:10.1016/b978-0-12-802260-3.00004-3.
  3. [3]  Vachtsevanos, V. (2021), A Novel Approach to the Spreading of SARS-CcOV 2 with the Use of Networks, Thesis, doi: 10.26262/heal.auth.ir.333859.
  4. [4]  Kucharski, A.J., Russell, T.W., Diamond, C., Liu, Y., Edmunds, J., Funk, S., Eggo, R.M., Sun, F., Jit, M., Munday, J.D., and Davies, N. (2020), Early dynamics of transmission and control of COVID-19: a mathematical modelling study, The Lancet Infectious Diseases, 20(5), 553-558. doi:10.1101/2020.01.31.20019901.
  5. [5]  Read, J.M., Bridgen, J.R., Cummings, D.A., Ho, A., and Jewell, C.P. (2020), Novel coronavirus 2019-ncov: Early estimation of epidemiological parameters and epidemic predictions, Philosophical Transactions of the Royal Society B, 376(1829), p.20200265. doi:10.1101/2020.01.23.20018549.
  6. [6]  Pan, J., Yao, Y., Liu, Z., Li, M., Wang, Y., Dong, W., Kan, H., and Wang, W. (2020), Effectiveness of control strategies for coronavirus disease 2019: A seir dynamic modeling study [Preprint], doi:10.2471/blt.20.253807.
  7. [7]  Shan, C. and Zhu, H. (2014), Bifurcations and complex dynamics of an SIR model with the impact of the number of hospital beds, Journal of Differential Equations, 257(5), 1662–1688. doi:10.1016/j.jde.2014.05.030.
  8. [8]  Dénes, A. and Gumel, A.B. (2019), Modeling the impact of quarantine during an outbreak of ebola virus disease, Infectious Disease Modelling, 4, 12–27. doi:10.1016/j.idm.2019.01.003.
  9. [9]  Zhou, Y., Ma, Z., and Brauer, F. (2004), A discrete epidemic model for SARS transmission and control in China, Mathematical and Computer Modelling, 40(13), 1491–1506. doi:10.1016/j.mcm.2005.01.007.
  10. [10]  Eckalbar, J.C. and Eckalbar, W.L. (2011), Dynamics of an epidemic model with quadratic treatment, Nonlinear Analysis: Real World Applications , 12(1), 320–332. doi:10.1016/j.nonrwa.2010.06.018.
  11. [11]  European Centre for Disease Prevention and Control. Available at: https://www.ecdc.europa.eu/en/covid-19/data (Accessed: 31 May 2022).
  12. [12]  Understanding how covid-19 vaccines work, Centers for Disease Control and Prevention. Available at: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/different-vaccines/how-they-work.html.
  13. [13]  Kaur, S.P. and Gupta, V. (2020), Covid-19 vaccine: A comprehensive status report, Virus Research, 288, 198114. doi:10.1016/j.virusres.2020.198114.
  14. [14]  SARS-CoV-2 Variant Classifications and Definitions Available at: https://www.cdc.gov/coronavirus/2019-ncov/ variants/variant-classifications.html (Accessed: 31 May 2022).
  15. [15]  Joshi, M., Puvar, A., Kumar, D., Ansari, A., Pandya, M., Raval, J., Patel, Z., Trivedi, P., Gandhi, M., Pandya, L., and Patel, K. (2020), Genomic variations in SARS-COV-2 genomes from Gujarat: Underlying role of variants in disease epidemiology, Frontiers in Genetics, 12, p.586569, doi:10.1101/2020.07.10.197095.
  16. [16]  Harvey, W.T., Carabelli, A.M., Jackson, B., Gupta, R.K., Thomson, E.C., Harrison, E.M., Ludden, C., Reeve, R., Rambaut, A., Peacock, S.J. and Robertson, D.L. (2021), SARS-CoV-2 variants, spike mutations and immune escape, Nat Rev Microbiol, 19(7), 409–424. https://doi.org/10.1038/s41579-021-00573-0.
  17. [17]  Bakhshandeh, B., Jahanafrooz, Z., Abbasi, A., Goli, M.B., Sadeghi, M., Mottaqi, M.S., and Zamani, M. (2021), Mutations in SARS-COV-2; consequences in structure, function, and pathogenicity of the virus, Microbial Pathogenesis, 154, 104831. doi:10.1016/j.micpath.2021.104831.
  18. [18]  Coronavirus cases (no date), Worldometer. Available at: www.worldometers.info/coronavirus/coronavirus - cases/ \#total – cases (Accessed: 31 May 2022).
  19. [19]  Shannon, C.E. (1948), A mathematical theory of communication, The Bell System Technical Journal, 27(3), 379-423. doi:10.1002/j.1538-7305.1948.tb01338.x.
  20. [20]  Pathria, R.K. (2016), Statistical Mechanics, Elsevier.
  21. [21]  Mandl, F. Statistical Physics, (2nd edition), Wiley, ISBN 978-0471915331.