Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


Singular Value Decomposition Method: Application to Design of Observer-Based Control for Uncertain Atangana-Baleanu-Caputo Fractional-Order One-Sided Lipschitz Nonlinear Systems

Discontinuity, Nonlinearity, and Complexity 13(2) (2024) 387--397 | DOI:10.5890/DNC.2024.06.015

Duong Thi Hong

Department of Mathematics and Informatics, TNU--University of Science, Thainguyen, Vietnam

Download Full Text PDF

 

Abstract

In this paper, the problems of observer-based control design and asymptotically stable for uncertain Atangana-Baleanu-Caputo fractional-order one-sided Lipschitz nonlinear systems have been considered. The purpose of this problem is that we design observer-based controller to ensure that the controlled system is asymtotically stable by using singular value decomposition method (SVD) and a well-behaved property of the Atangana-Baleanu-Caputo fractional calculus. The results are obtained in terms of LMI, which can be effectively solved in polynomial time by various computational tools. Finally, a numerical example has been presented to show the simplicity of our design method.

References

  1. [1]  Sayooj, A.J., Raja, R., Alzabut, J., Rajchakit, G., Cao, J., and Valentina Balas, E. (2022), Mathematical modeling on transmission and optimal control strategies of corruption dynamics, Nonlinear Dynamics, 109, 3169-3187.
  2. [2]  Sayooj, A.J., Raja, R., Zhu, Q., Niezabitowski, M., Alzabut, J., and Valentina Balas, E. (2022), An integrated eco-epidemiological plant pest natural enemy model with different impulsive strategies, Mathematical Problems in Engineering, Article ID 4780680, https://doi.org/10.1155/2022/4780680.
  3. [3]  Sayooj, A.J., Raja, R., Zhu, Q., Alzabut, J., Niezabitowski, M., and Valentina Balas, E. (2022), Impact of Strong Determination and Awareness on Substance Addictions: AMathematical Modeling Approach, Mathematical Methods in the Applied Sciences, 45, 4140-4160.
  4. [4]  Khaminsou, B., Thaiprayoon, C., Sudsutad, W., and Aby Jose, S. (2021), Qualitative analysis of a proportional caputo fractional pantograph differential equation with mixed nonlocal conditions, Nonlinear Functional Analysis and Applications, 26(1), 197-223.
  5. [5]  Phat, V.N., Niamsup, P., and Thuan, M.V. (2020), A new design method for observer-based control of nonlinear fractional-order systems with time-variable delay, European Journal of Control, 56, 124-131.
  6. [6]  Wei, Y., Peter, W.T., Yao, Z., and Wang, Y. (2017), The output feedback control synthesis for a class of singular fractional order systems, ISA Transactions, 69, 1-9.
  7. [7]  Dietthelm, K. (2010), The Analysis of Fractional Differential Equations. An Application Oriented Exposition using Differential Operators of Caputo Type, Lecture notes in mathematics, Springer-Verlag: Berlin.
  8. [8]  Kilbas, A., Srivastava, H., and Trujillo, J. (2006), Theory and Application of Fractional Diffrential Equations, Elsevier: New York.
  9. [9]  Lekshmikantham, V., Leela, S., and Devi, J.V. (2009), Theory of Fractional Dynamical Systems, Cambridge scientific publishers: Cambridge.
  10. [10]  Li, C. and Ma, Y. (2013), Fractional dynamical system and ít linearization theorem, Nonlinear Dynamics, 71, 621-633.
  11. [11]  Miller, K.S. and Ross, B. (1993), An Introducton to the Fractional Calculus and Fractional Differential Equations, John Wiley \& Sons Inc.: New York.
  12. [12]  Atangana, A. and Baleanu, D. (2016), New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Thermal Science, 20(2), 763-769.
  13. [13]  Alkahtani, B.S.T. (2016), Chua's circuit model with Atangana–Baleanu derivative with fractional order, Chaos, Solitons \& Fractals, 89, 547-551.
  14. [14]  Abdeljawad, T. and Baleanu, D. (2017), Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel, Journal of Nonlinear Sciences and Applications, 10(3), 1098-1107.
  15. [15]  Yadav, S., Pandey, R.K., and Shukla, A.K. (2019), Numerical approximations of Atangana–Baleanu Caputo derivative and its application, Chaos, Solitons \& Fractals, 118, 58-64.
  16. [16]  Veluvolu, K.C. and Soh, Y.C. (2011), Multiple sliding mode observers and unknown input estimations for Lipschitz nonlinear systems, International Journal of Robust and Nonlinear Control, 21, 1322-1340.
  17. [17]  Zemouche, A. and Boutayeb, M. (2011), Observer synthesis method for Lipschitz nonlinear discrete-time systems with time delay: an LMI approach, Journal of Applied Mathematics, 218(53), 419-429.
  18. [18]  Zemouche, A. and Boutayeb, M. (2013), On LMI conditions to design observers for Lipschitz nonlinear systems, Automatica, 49, 585-591.
  19. [19]  Abbaszadeh, M. and Marqez, H. (2010), Nonlinear observer design for one-sides Lipschitz systems, Proceeding of the American Control Conference, Baltimore, USA, 5284-5289.
  20. [20]  Zhang, V., Su, H., Zhu, F., and Yue, D. (2012), A note on observers for discrete-time Lipschitz nonlinear systems, IEEE Transactions on Circuits and Systems II: Express Briefs, 59, 123-127.
  21. [21]  Hu, G. (2006), Observers for one-sided Lipschitz nonlinear systems, IMA Journal of Mathematical Control and Information, 23, 395-401.
  22. [22]  Fu, Y., Tian, Z., and Shi, S. (2003), State feedback stabilization for a class of stochastic time-delay nonlinear systems, IEEE Transactions on Automatic Control, 48(2), 282-286.
  23. [23]  Huang, L. and Mao, X. (2009), Robust delayed-state-feedback stabilization of uncertain stochastic systems, Automatica, 45(5), 1332-1339.
  24. [24]  Nasser, B.B., Boukerrioua, K., Defoort, M., Djemai, M., and Hammami, M.A. (2016), State feedback stabilization of a class of uncertain nonlinear systems on non-uniform time domains, Systems \& Control Letters, 97, 18-26.
  25. [25]  Sun, Z.Y., Dong, Y.Y., and Chen, C.C. (2019), Global fast finite-time partial state feedback stabilization of high-order nonlinear systems with dynamic uncertainties, Information Sciences, 484, 219-236.
  26. [26]  Hong, D.T., Sau, N.H., and Thuan, M.V. (2021), Output feedback finite-time dissipative control for uncertain nonlinear fractional-order systems, Asian Journal of Control, 24(5), 2284-2293.
  27. [27]  Song, X., Liu, L., Tejado Balsera, I., and Guo, H. (2016), Output feedback control for fractional-order Takagi-Sugeno fuzzy systems with unmeasurable premise variables, Transactions of the Institute of Measurement and Control, 38(10), 1201-1211.
  28. [28]  El Haiek, B., El Aiss, H., Abdelaziz, H., El Hajjaji, A., and El Houssaine, T. (2019), New approach to robust observer-based control of one-sided Lipschitz non-linear systems, IET Control Theory and Applications, 13(3), 333-342.
  29. [29]  Martínez-Fuentes, O. and Delftín-Prieto, S.M. (2020), Applications of Fractional Calculus to Modeling in Dynamics and Chaos: Stability of Fractional Nonlinear Systems with Mittag-Leffler Kernel and Design of State Observers, John Wiley \& Sons Inc.: New York.
  30. [30]  Boyd, S., Ghaoui, L.E., Feron, E., and Balakrishnan, V. (1994), Linear Matrix Inequalities in System and Control Theory, SIAM: Philadelphia.
  31. [31]  MacDuffee, C.C. (2004), The Theory of Matrices, Dover Publications: New York.