Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


A New Approach on Exact Controllability of Semilinear Predator Prey Model

Discontinuity, Nonlinearity, and Complexity 13(1) (2024) 17--26 | DOI:10.5890/DNC.2024.03.002

Chandan Shukla, Anurag Shukla, Rajeev Kumar, Arun Kumar Singh, Arstu Gautam

Rajkiya Engineering College, Kannauj, Uttar Pradesh-209732, India

Download Full Text PDF

 

Abstract

Using the fundamentals of functional differential equations, we provide explicit controllability results for a family of semilinear nonautonomous predator-prey systems in this study. The suggested method is simple in terms of hefty estimations as compared to standard ways because it avoids the well-known fixed point theory approach. It's also effective because it doesn't require any of the unnatural conditions that fixed point theory requires. Finally, we looked at a case study with simulation findings.

References

  1. [1]  Albrecht, F., Gatzke, H., Haddad, A., and Wax, N. (1976), On the control of certain interacting populations, Journal of Mathematical Analysis and Applications, 53(3), 578-603, DOI:doi.org/10.1016/0022-247X(76)90094-9.
  2. [2]  Freedman, H.I. (1980), Deterministic Mathematical Model in Population Ecology, Marcel Dekker, New York, New York, DOI:doi.org/10.4236/as.2014.53024.
  3. [3]  Scudo, F.M. (1971), Vito Volterra and theoretical ecology, Theoretical Population Biology, 2(1), 1-23, DOI:doi.org/10.1016/0040-5809(71)90002-5.
  4. [4]  Backwinkel-Schillings, M. (1976), Existence theorems for generalized Hammerstein equations, Journal of Functional Analysis, 23(3), 177-194, DOI:doi.org/10.1016/0022-1236(76)90046-X.
  5. [5]  Cheng, H. and Yuan, R. (2017), Existence and stability of traveling waves for Leslie Gower predator-prey system with nonlocal diffusion, Discrete and Continuous Dynamical Systems-A, 37(10), 5433, DOI:doi.org/10.3934/dcds.2017236.
  6. [6]  Fu, S. and Miao, L. (2020), Global existence and asymptotic stability in a predator prey chemotaxis model, Nonlinear Analysis: Real World Applications, 54, 103079, DOI:doi.org/10.1016/j.nonrwa.2019.103079.
  7. [7]  Ghanbari, B. (2020), On approximate solutions for a fractional prey predator model involving the Atangana Baleanu derivative, Advances in Difference Equations, (1), 1-24, DOI:doi.org/10.1016/j.rinp.2023.106489.
  8. [8]  Kumar, S., Kumar, R., Cattani, C., and Samet, B. (2020), Chaotic behaviour of fractional predator-prey dynamical system. Chaos, Solitons and Fractals, 135, 109811, DOI:doi.org/10.1016/j.chaos.2020.109811.
  9. [9]  Curtain, R.F. and Zwart, H. (2012), An introduction to infinite-dimensional linear systems theory, Springer Science $\&$ Business Media, 21, DOI:10.1137/1038096.
  10. [10]  Fattorini, H.O. (1966), Some remarks on complete controllability, SIAM Journal on Control, 4(4)m 686-694, DOI:doi.org/10.1137/0304048,
  11. [11]  Zabczyk, J. (1997), Mathematical control theory: an introductionmm Applications of Mathematics-New York, 42(1), 80.
  12. [12]  Bashirov, A.E. and Mahmudov, N.I. (1999), On concepts of controllability for deterministic and stochastic systems, SIAM Journal on Control and Optimization, 37(6), 1808-1821, DOI:doi/10.1137/S036301299732184X.
  13. [13]  Bashirov, A.E. and Jneid, M. (2013), On Partial Complete Controllability of Semilinear Systems, In Abstract and Applied Analysis, Hindawi, 2013, DOI:doi.org/10.1155/2013/521052,
  14. [14]  Bashirov, A.E. and Jneid, M. (2014), Partial complete controllability of deterministic semilinear systems, TWMS Journal of Applied and Engineering Mathematics, 4(2), 216-225.
  15. [15]  Balachandran, K. and Dauer, J.P. (2002), Controllability of nonlinear systems in Banach spaces: a survey, Journal of Optimization Theory and Applications, 115(1), 7-28, DOI:doi.org/10.1023/A:1019668728098.
  16. [16]  Klamka, J. (2013), Controllability of dynamical systems. A survey, Bulletin of the Polish Academy of Sciences. Technical Sciences, 61(2), DOI:10.2478/bpasts-2013-0031.
  17. [17]  Echarroudi, Y., Maniar, L., and Ainseba, B. (2020), Null controllability of a cascade model in population dynamics. DOI:doi.org/10.48550/arXiv.1701.04083.
  18. [18]  Gu, J.J. and Wang, X.M. (2012), Null exact controllability of predator prey population dynamics, Applied Mathematical Sciences, 6(2), 55-62.
  19. [19]  Zhang, H., Georgescu, P., and Chen, L. (2008), On the impulsive controllability and bifurcation of a predator pest model of IPM, BioSystems, 93(3), 151-171, DOI:10.1016/j.biosystems.2008.03.008.
  20. [20]  Silverman, L.M. and Meadows, H.E. (1967), Controllability and observability in time-variable linear systems, SIAM Journal on Control, 5(1), 64-73, DOI:doi.org/10.1137/0305005.
  21. [21]  Joshi, M.C. and George, R.K. (1992), On the controllability of predator-prey systems, Journal of Optimization Theory and Applications, 74(2), 243-258, DOI:10.1007/BF00940893.
  22. [22]  Leiva, H. (2015), Controllability of semilinear impulsive nonautonomous systems, International Journal of Control, 88(3), 585-592, DOI:10.1080/00207179.2014.966759.
  23. [23]  Kar, T.K. and Matsuda, H. (2006), Controllability of a harvested prey predator system with time delay, Journal of Biological Systems, 14(02), 243-254, DOI:doi.org/10.1142/S0218339006001775.
  24. [24]  Sakthivel, K., Devipriya, G., Balachandran, K., and Kim, J.H. (2010), Controllability of a reaction-diffusion system describing predator prey model, Numerical Functional Analysis and Optimization, 31(7), 831-851, DOI:doi.org/10.1080/01630563.2010.493128.
  25. [25]  Dineshkumar, C., Udhayakumar, R., Vijayakumar, V., Shukla, A., and Nisar, K.S. (2021), A note on approximate controllability for nonlocal fractional evolution stochastic integrodifferential inclusions of order $r\in(1,2)$ with delay, Chaos, Solitons and Fractals, 153, 111565, DOI: 10.1016/j.chaos.2021.111565.
  26. [26]  Dineshkumar, C., Udhayakumar, R., Vijayakumar, V., Nisar, K.S., and Shukla, A. (2021), A note on the approximate controllability of Sobolev type fractional stochastic integro-differential delay inclusions with order $1
  27. [27]  Haq, A. and Sukavanam, N. (2020), Existence and approximate controllability of Riemann-Liouville fractional integrodifferential systems with damping, Chaos, Solitons and Fractals, 139, 110043, DOI:doi.org/10.1016/j.chaos.2020.110043.
  28. [28]  Haq, A. and Sukavanam, N. (2021), Mild solution and approximate controllability of retarded semilinear systems with control delays and nonlocal conditions. Numerical Functional Analysis and Optimization, 42(6), 721-737, DOI:doi.org/10.1080/01630563.2021.1928697.
  29. [29]  Mohan Raja, M., Vijayakumar, V., Shukla, A., Nisar, K.S., and Rezapour, S. (2021), New discussion on nonlocal controllability for fractional evolution system of order $1
  30. [30]  Shukla, A., Sukavanam, N., and Pandey, D.N. (2015), Approximate controllability of semilinear fractional control systems of order $\alpha\in(1,2]$. In 2015 Proceedings of the Conference on Control and its Applications, Society for Industrial and Applied Mathematics, 175-180, DOI:doi.org/10.1137/1.9781611974072.25.
  31. [31]  Shukla, A., Sukavanam, N., and Pandey, D.N. (2015), Complete controllability of semi-linear stochastic system with delay, Rendiconti del Circolo Matematico di Palermo (1952-), 64(2), 209-220.
  32. [32]  Shukla, A., Sukavanam, N., and Pandey, D.N. (2014), Controllability of semilinear stochastic system with multiple delays in control, IFAC Proceedings Volumes, 47(1), 306-312, DOI:doi.org/10.3182/20140313-3-IN-3024.00107.
  33. [33]  Shukla, A., Sukavanam, N., and Pandey, D.N. (2015), Approximate controllability of semilinear stochastic control system with nonlocal conditions, Nonlinear Dynamics and Systems Theory, 15(3), 321-333, DOI:doi.org/10.1002/mma.8444.
  34. [34]  Vijayakumar, V. and Murugesu, R. (2019), Controllability for a class of second-order evolution differential inclusions without compactness, Applicable Analysis, 98(7), 1367-1385, DOI:doi.org/10.1080/00036811.2017.1422727
  35. [35]  Vijayakumar, V., Udhayakumar, R., and Dineshkumar, C. (2021), Approximate controllability of second order nonlocal neutral differential evolution inclusions, IMA Journal of Mathematical Control and Information, 38(1), 192-210, DOI:doi.org/10.1093/imamci/dnaa001.
  36. [36]  Vijayakumar, V. (2018), Approximate controllability for a class of second-order stochastic evolution inclusions of Clarke subdifferential type, Results in Mathematics, 73(1), 1-23, DOI:doi.org/10.1007/s00025-018-0807-8.
  37. [37]  Vijayakumar, V., Panda, S.K., Nisar, K.S., and Baskonus, H.M. (2021), Results on approximate controllability results for second-order Sobolev-type impulsive neutral differential evolution inclusions with infinite delay, Numerical Methods for Partial Differential Equations, 37(2), 1200-1221, DOI:10.1002/num.22573.
  38. [38]  Zhang, X. (2000), Exact controllability of semilinear evolution systems and its application, Journal of Optimization Theory and Applications, 107(2), 415-432, DOI:10.1023/A:1026460831701.
  39. [39]  Bashirov, A.E. (2021), On exact controllability of semilinear systems, Mathematical Methods in the Applied Sciences, 44, 7455- 7462, DOI:doi.org/10.1002/mma.6265.