Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


Nonlinear Neutral Caputo $q$-Fractional Difference Equations with Applications to Lotka-Volterra Neutral Model

Discontinuity, Nonlinearity, and Complexity 12(2) (2023) 399--410 | DOI:10.5890/DNC.2023.06.012

$^1$ Mathematics Department, Faculty of Science, University of Ha'il, Kingdom of Saudi Arabia

$^2$ Department of Mathematics and Informatics, University of Souk Ahras, P.O. Box 1553, Souk Ahras, Algeria

Download Full Text PDF

 

Abstract

In this paper, we consider nonlinear neutral q-fractional difference equations which have important applications in many domains of life sciences. By using the Krasnoselskii fixed point theorem, sufficient conditions for the existence of solutions are established, also the uniqueness of solutions is given. As an application of the main theorems, we provide the existence and uniqueness of the discrete $q$-fractional Lotka-Volterra model of neutral type. Our main theorems are important results because are extend and generalize the results in the literature.

Acknowledgments

The authors would like to thank the anonymous referees for their valuable comments and good advices.

References

  1. [1]  Diethelm, K., Ford, N.J., Freed, A.D., and Luchko, Y. (2005), Algorithms for the fractional calculus: A selection of numerical methods, Computer Methods in Applied Mechanics and Engineering, 194, 743-773.
  2. [2]  Atangana, A. and Botha, J.F. (2013), Generalized groundwater flow equation using the concept of variable order derivative, Boundary Value Problems, 2013, 53.
  3. [3]  Kilbas, A.A., Srivastava, H.M., and Trujillo, J.J. (2006), Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam: The Netherlands.
  4. [4]  Podlubny, I. (1999), Fractional Differential Equations, Academic Press: New York, USA.
  5. [5]  Samko,S.G., Kilbas, A.A., and Marichev, O.I. (1993), Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon: Switzerland.
  6. [6]  Jackson, F.H. (1908), On $q$-functions and a certain difference operator, Transactions of the Royal Society of Edinburgh, 46, 253-281.
  7. [7]  Al-Salam, W.A. (1969), Some fractional $q$-integrals and $% q $-derivatives, Proceedings of the Edinburgh Mathematical Society, 15, 135-140.
  8. [8]  Butt, R.I., Abdeljawad, T., Alqudah, M.A., and Ur Rehman, M. (2019), Ulam stability of Caputo $q$-fractional delay difference equation: $ q $-fractional Gronwall inequality approach, Journal of Inequalities and Applications, 2019(305), 1-13.
  9. [9]  Ernst, T. (2012), A Comprehensive Treatment of $q$-Calculus, Birkh\`{a}user.
  10. [10]  Floreanini, R. and Vinet, L. (1994), Symmetries of the $ q$-difference heat equation, Letters in Mathematical Physics, 32, 37-44.
  11. [11]  Floreanini, R. and Vinet, L. (1995), Quantum symmetries of $q$-difference equations, Journal of Mathematical Physics, 36(6), 3134-3156.
  12. [12]  Jarad, F., Abdeljawad, T., and Baleanu, D. (2013), Stability of $ q$-fractional non-autonomous systems, Nonlinear Analysis: Real and World Applications, 14(1), 780-784.
  13. [13]  Abdeljawad, T., Benli, B., and Baleanu, D. (2012), A generalized $q$-Mittag-Lefler function by Caputo fractional linear equations, Abstract and Applied Analysis, 2012, 1-11.
  14. [14]  Abdeljawady, T., Alzabutz, J., and Zhou, H. (2017), A Krasnoselskii existence result for nonlinear delay Caputo $q$-fractional difference equations with applications to Lotka-Volterra competition model, Applied Mathematics E-Notes, 17, 307-318.
  15. [15]  Agrawal, R.P. (1969), Certain fractional $q$-integrals and $q$-derivatives, Proceedings of the Cambridge Philosophical Society, 66, 365-370.
  16. [16]  Al-Salam, W.A. (1952-1953), $q$-Analogues of Cauchy's formula, Proceedings of the American Mathematical Society, 17, 182-184.
  17. [17]  Al-Salam, W.A. and Verma, A. (1975), A fractional Leibniz $q$-formula, Pacific Journal of Applied Mathematics, 60, 1-9.
  18. [18]  Atici, F.M. and Eloe, P.W. (2007), Fractional $q$-calculus on a time scale, Journal of Nonlinear Mathematical Physics, 14, 333-344.
  19. [19]  Mansour, Z.S.I. (2009), Linear sequential $q$-difference equations of fractional order, Fractional Calculus and Applied Analysis, 12, 159-178.
  20. [20]  Mardanov, M.J., Mahmudov, N.I., and Sharifov, Y.A. (2015), Existence and uniqueness results for $q$-fractional difference equations with $p$-Laplacian operators, Advances in Difference Equations, 2015(185), 1-13.
  21. [21]  Tariboon, J., Ntouyas, S.K., and Agarwal, P. (2015), New concepts of fractional quantum calculus and applications to impulsive fractional q-difference equations, Advances in Difference Equations, 2015(18).
  22. [22]  Zhao, Y., Chen, H., and Zhang, Q. (2013), Existence results for fractional $q$-difference equations with nonlocal $q$-integral boundary conditions, Advances in Difference Equations, 2013(48), 1-15.
  23. [23]  Chen, F. (2005), Positive periodic solutions of neutral Lotka-Volterra system with feedback control, Applied Mathematics and Computation, 162(3), 1279-1302.
  24. [24]  Liu, Z. and Chen, L. (2006), Periodic solution of neutral Lotka-Volterra system with periodic delays, Journal of Mathematical Analysis and Applications, 324(1), 435-451.
  25. [25]  Mesmouli, M.B., Ardjouni, A., and Djoudi A. (2020), Nonlinear neutral caputo-fractional difference equations with applications to lotka-volterra neutral model, Facta Universitatis. Series: Mathematics and Informatics, 35(5), 1475-1488.
  26. [26]  Abdeljawad, T. and Baleanu, D. (2011), Caputo $q$-fractional initial value problems and a $q$-analogue Mittag-Lefler function, Communications in Nonlinear Science and Numerical Simulation, 16, 4682-4688.
  27. [27]  Alqudah, M.A., Ravichandran, C., Abdeljawad, T., and Valliammal, N. (2019), New results on Caputo fractional-order neutral differential inclusions without compactness, Advances in Difference Equations, 2019(528).
  28. [28]  Ardjouni, A. and Djoudi, A. (2019), Initial-value problems for nonlinear hybrid implicit Caputo fractional differential equations, Malaya Journal of Matematik, 7(2), 314-317.
  29. [29]  Burton, T.A. (1998), A fixed point theorem of Krasnoselskii fixed point theorem, Applied Mathematics Letters, 11, 85-88.
  30. [30]  Jose, S.A., Yukunthorn, W., Valdes, J.E.N., and Leiva, H. (2020), Some existence, uniqueness and stability results of nonlocal random impulsive integro-differential equations, Applied mathematics E-Notes, 20, 481-492.
  31. [31]  Jose, S.A., Tom, A., Ali, M.S., Abinaya, S., and Sudsutad, W. (2021), Existence, uniqueness and stability results of semilinear functional special random impulsive differential equations, Dynamics of Continuous, Discrete and Impulsive systems, Series A: Mathematical Analysis, 28, 269-293.
  32. [32]  Dong, J., Feng, Y., and Jiang, J. (2017), A Note on implicit fractional differential equations, Mathematica Aeterna, 7(3), 261-267.
  33. [33]  Alzabut, J., Abdeljawad, T. and Baleanu, D. (2018), Nonlinear delay fractional difference equations with applications on discrete fractional Lotka-Volterra competition model, Journal of Computational Analysis and Applications, 25(5), 889-898. \enlargethispage{\baselineskip}
  34. [34]  Atici, F.M. and \c{S}eng\"{u}l, S. (2010), Modeling with factorial difference equations, Journal of Mathematical Analysis, 369(1), 1-9.
  35. [35]  Capone, F., Luca, R.D., and Rionero, S. (2013), On the stability of non-autonomous perturbed Lotka-Volterra models, Applied Mathematics and Computation, 219(12), 6868-6881.
  36. [36]  Chen F.D. and Chen, X.X. (2003), The n-competing Volterra-Lotka almost periodic systems with grazing rates, International Journal of Biomathematics, 18(4), 411-416.
  37. [37]  Gopalsamy, K. and Weng, P.X. (1993), Feedback regulation of logistic growth, International Journal of Mathematical Sciences, 16(1), 177-192.
  38. [38]  Li, J.X. and Yan, J.R. (2008), Persistence for Lotka-volterra patch-system with time delay, Nonlinear Analysis: Real World Applications, 9(2), 490-499.