Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


Positive Solution for a Class of Infinite Semipositone (p,q)-Laplace System

Discontinuity, Nonlinearity, and Complexity 11(4) (2022) 757--765 | DOI:10.5890/DNC.2022.12.013

Sounia Zeditri, Kamel Akrout, Rafik Guefaifia

Laboratory of Mathematics, Informatics and Systems, Larbi Tebessi, University, Tebessa, 12000, Algeria

Download Full Text PDF

 

Abstract

In this paper we consider following (p,q)-Laplacian system \begin{equation*} \left\{ \begin{split} & -\Delta _{p}u=\lambda l\left( x\right) u^{p-1}-f_{1}\left( u,v\right) -au^{-\alpha _{1}}v^{\beta _{2}}\ \text{in }\Omega , \\ & -\Delta _{q}v=\mu k\left( x\right) v^{q-1}-f_{2}\left( u,v\right) -bu^{\alpha _{2}}v^{-\beta _{2}}\text{ in }\Omega , \\ & u=v=0\text{ on }\partial \Omega ,% \end{split} \right. \end{equation*} where $\Omega $ is a bounded domain in $\mathbb{R}^{N}$ with smooth boundary $\partial \Omega $, $\lambda $ and $\mu $ are a positive parameters and $a,$ $b$ are a positive constant. By using the method of sub-supersolution we discuss the existence of positive solution.

Acknowledgments

The authors acknowledge to Prof. Salah Mahmoud Boulaaras from Qassim University at Saudi Arabia for a first revision and kind comments on this work. The authors would like to thank the anonymous referees and the handling editor for their careful reading and for relevant remarks/suggestions.

References

  1. [1]  Boulaaras, S. and Guefaifi, R. (2018), Existence of positive solutions for a class of -Laplacian systems (p(x), q (x)), Rendiconti del Circolo Matematico di Palermo, 2(67), 93-103.
  2. [2]  Boulaaras, S.G. and Bouali, T. (2018), Existence de solutions positives pour une classe de syst\`{e}mes elliptiques singuliers quasi-lin{e}aires impliquant un exposant de Caffarelli-Kohn-Nirenberg avec des fonctions de poids de changement de signe, Indian Journal of Pure and Applied Mathematics, 2018.
  3. [3]  Brezis, H. (1987), Analyse fonctionnelle, th{e}orie et applications, Masson. Parie.
  4. [4]  Demengel, F. and Demengel, G. (2007), Espaces fonctionnels. utilisation dans des E.D.P, Sciences France.
  5. [5]  Guefaifia, R. and Boulaaras (2020), Sub-super solutions method for elliptical systems hold Laplacian p 1, ..., pm, Mathematical Methods in Applied Sciences, 43(7), 4191-4199.
  6. [6]  Guefaifia, R., Akrout, K., and Saifia, W. (2013), Existence and nonexistence of weak positive solution for classes of 3 p-Laplacian elliptic systems, International Journal of Partial Differential Equations and Applications, 1(1), 13-17.
  7. [7]  Guefaifia, R., Boulaaras, S.M., Alodhaibi, S., and Alkhalaf, S. (2020), Existence of weak positive solutions for a new class of Laplacian nonlinear elliptical system with sign change weights, Complexity, 2020.
  8. [8]  Guefaifia, R., Boulaaras, S., and Bouizem, Y. (2020), Existence of positive solutions for a class of Kirrchoff systems with the right side defined as a multiplication of two distinct functions, Applied Mathematics E-Notes, 19, 331-342.
  9. [9]  Guefaifia, R., Zuo, J., Boulaaras, S., and Agarwal, P. (2020), Existence and multiplicity of positive weak solutions for a new class of (p; q) -laplacian systems preprint arXiv arXiv: 2006.05776.
  10. [10]  Haghaieghi, S. and Afrouzi, G.A. (2011), Sub-super solutions for (p-q) laplacian systems, Boundary Value Problems, 52.
  11. [11]  Hai, D.D. and Shivaji, R. (2004), An existence result on positive solutions for a class of p-laplacian systems, Nonlinear Analysis, 56, 1007-1010.
  12. [12]  Lee, E.K., Shivaji, R., and Ye. J, (2010), Positive solutions for infinite semipositone problems with falling zeros, Nonlinear Analysis, 72, 4475-4479.
  13. [13]  Rasouli, S.H. (2013), On the existence of positive solutions for a class of infinite semipositone systems with singular weights, Thai J. Math., 11(1), 103-110.
  14. [14]  Shivaji, R. and Ye, J. (2011), Nonexistence results for classes of elliptic systems, Nonlinear Analysis, 74, 1485-1494. 189-204.
  15. [15]  Zediri, S., Guefaifia, R., and Boulaaras, S. (2020), Existence of positive solutions of a new classof nonlocal p(x)-Kirchhoff parabolic systemsvia sub-super-solutions concept, J. Appl. Anal., 26(1), 49-58.
  16. [16]  Guefaifia, R., Boulaaras, S., Cherif, B., and Radwan, T. (2020), Infinite existence solutions of fractional systems with lipschitz nonlinearity, Journal of Function Spaces, vol. 2020, Article ID 6679101, 11 pages, 2020. https://doi.org/ 10.1155/2020/6679101
  17. [17]  Boulaaras, S., Guefaifia, R., Cherif, B., and Radwan, T. (2020), Existence result for a Kirchhoff elliptic system involving p-Laplacian operator with variable parameters and additive right hand side via sub and super solution methods, AIMS Mathematics, 6(3), 2315-2329. doi: 10.3934/math.2021140
  18. [18]  Guefaifia, R., Boulaaras, J., and Zuo, P.A. (2020), Existence and multiplicity of positive weak solutions for a new class of (P; Q)-Laplacian systems, Miskolc Mathematical Notes, 21(2), 861-872.
  19. [19]  Haiour, M., Boulaaras, S., Guefaifia, R., and Kamache, F. (2020), Existence result for a new class of Kirchhoff elliptic system with variable parameters, Miskolc Mathematical Notes, 21(2), 887-896.
  20. [20]  Afrouzi, G.A., Shakeri, S., and Chung, N.T. (2013), Remark on an infinite semipositone problem with indefinite weight and falling zeros, Proc. Indian Acad. Sci. (Math. Sci.), 123(1), 145-150.
  21. [21]  Akrout, K. (2015), Existence of positive solution for a class of infinite semipositone p-Laplace systems with falling zeros, International Journal of Mathematics and Computation, 26(4), 74-80.
  22. [22]  Afrouzi, G.A. Chung, N.T., and Shakeri, S. (2013), Existence of positive solutions for kirchhoff type equations, Electronic Journal of Differential Equations, 2013(180), 1-8.