Discontinuity, Nonlinearity, and Complexity
Positive Solution for a
Class of Infinite Semipositone (p,q)-Laplace System
Discontinuity, Nonlinearity, and Complexity 11(4) (2022) 757--765 | DOI:10.5890/DNC.2022.12.013
Sounia Zeditri, Kamel Akrout, Rafik Guefaifia
Laboratory of Mathematics, Informatics and Systems, Larbi Tebessi,
University,
Tebessa, 12000, Algeria
Download Full Text PDF
Abstract
In this paper we consider following (p,q)-Laplacian
system
\begin{equation*}
\left\{
\begin{split}
& -\Delta _{p}u=\lambda l\left( x\right) u^{p-1}-f_{1}\left( u,v\right)
-au^{-\alpha _{1}}v^{\beta _{2}}\ \text{in }\Omega ,
\\
& -\Delta _{q}v=\mu k\left( x\right) v^{q-1}-f_{2}\left( u,v\right)
-bu^{\alpha _{2}}v^{-\beta _{2}}\text{ in }\Omega ,
\\
& u=v=0\text{ on }\partial \Omega ,%
\end{split}
\right.
\end{equation*}
where $\Omega $ is a bounded domain in $\mathbb{R}^{N}$ with smooth boundary
$\partial \Omega $, $\lambda $ and $\mu $ are a positive parameters and $a,$
$b$ are a positive constant.
By using the method of sub-supersolution we discuss the existence of
positive solution.
Acknowledgments
The authors acknowledge to Prof. Salah Mahmoud Boulaaras from Qassim University at Saudi Arabia for a first revision and kind comments on this work. The authors would like to thank the anonymous referees and the handling editor for their careful reading and for relevant remarks/suggestions.
References
-
[1]  | Boulaaras, S. and Guefaifi, R. (2018), Existence of
positive solutions for a class of -Laplacian systems (p(x), q (x)),
Rendiconti del Circolo Matematico di Palermo, 2(67), 93-103.
|
-
[2]  | Boulaaras, S.G. and Bouali, T. (2018), Existence
de solutions positives pour une classe de syst\`{e}mes elliptiques
singuliers quasi-lin{e}aires impliquant un exposant de
Caffarelli-Kohn-Nirenberg avec des fonctions de poids de changement de
signe, Indian Journal of Pure and Applied Mathematics, 2018.
|
-
[3]  | Brezis, H. (1987), Analyse fonctionnelle, th{e}orie
et applications, Masson. Parie.
|
-
[4]  | Demengel, F. and Demengel, G. (2007), Espaces
fonctionnels. utilisation dans des E.D.P, Sciences France.
|
-
[5]  | Guefaifia, R. and Boulaaras (2020), Sub-super
solutions method for elliptical systems hold Laplacian p 1, ..., pm,
Mathematical Methods in Applied Sciences, 43(7), 4191-4199.
|
-
[6]  | Guefaifia, R., Akrout, K., and Saifia, W. (2013),
Existence and nonexistence of weak positive solution for classes of 3 p-Laplacian elliptic systems, International Journal
of Partial Differential Equations and Applications, 1(1), 13-17.
|
-
[7]  | Guefaifia, R., Boulaaras, S.M., Alodhaibi, S., and
Alkhalaf, S. (2020), Existence of weak positive solutions for a new class of
Laplacian nonlinear elliptical system with sign change weights, Complexity,
2020.
|
-
[8]  | Guefaifia, R., Boulaaras, S., and Bouizem, Y. (2020),
Existence of positive solutions for a class of Kirrchoff systems with the
right side defined as a multiplication of two distinct functions,
Applied
Mathematics E-Notes, 19, 331-342.
|
-
[9]  | Guefaifia, R., Zuo, J., Boulaaras, S., and Agarwal, P.
(2020), Existence and multiplicity of positive weak solutions for a new class
of (p; q) -laplacian systems preprint arXiv arXiv: 2006.05776.
|
-
[10]  | Haghaieghi, S. and Afrouzi, G.A. (2011), Sub-super
solutions for (p-q) laplacian systems, Boundary Value Problems, 52.
|
-
[11]  | Hai, D.D. and Shivaji, R. (2004), An existence result on
positive solutions for a class of p-laplacian systems, Nonlinear Analysis,
56,
1007-1010.
|
-
[12]  | Lee, E.K., Shivaji, R., and Ye. J, (2010), Positive
solutions for infinite semipositone problems with falling zeros, Nonlinear
Analysis, 72, 4475-4479.
|
-
[13]  | Rasouli, S.H. (2013), On the existence of positive
solutions for a class of infinite semipositone systems with singular
weights, Thai J. Math., 11(1), 103-110.
|
-
[14]  | Shivaji, R. and Ye, J. (2011),
Nonexistence results for classes of elliptic systems,
Nonlinear Analysis, 74, 1485-1494. 189-204.
|
-
[15]  | Zediri, S., Guefaifia, R., and Boulaaras, S. (2020),
Existence of positive solutions of a new classof nonlocal p(x)-Kirchhoff
parabolic systemsvia sub-super-solutions concept, J. Appl. Anal.,
26(1),
49-58.
|
-
[16]  | Guefaifia, R., Boulaaras, S., Cherif, B., and Radwan, T. (2020), Infinite existence solutions of fractional systems with lipschitz nonlinearity, Journal of Function Spaces, vol. 2020, Article ID 6679101, 11 pages, 2020. https://doi.org/ 10.1155/2020/6679101
|
-
[17]  | Boulaaras, S., Guefaifia, R., Cherif, B., and Radwan, T. (2020), Existence result for a Kirchhoff elliptic system involving p-Laplacian operator with variable parameters and additive right hand side via sub and super solution methods, AIMS Mathematics, 6(3), 2315-2329. doi: 10.3934/math.2021140
|
-
[18]  | Guefaifia, R., Boulaaras, J., and Zuo, P.A. (2020), Existence and multiplicity of positive weak solutions for a new class of (P; Q)-Laplacian systems, Miskolc Mathematical Notes,
21(2), 861-872.
|
-
[19]  | Haiour, M., Boulaaras, S., Guefaifia, R., and Kamache, F. (2020), Existence result for a new class of Kirchhoff elliptic system with variable parameters, Miskolc Mathematical Notes,
21(2), 887-896.
|
-
[20]  | Afrouzi, G.A., Shakeri, S., and Chung, N.T. (2013),
Remark on an infinite semipositone problem with indefinite weight and
falling zeros, Proc. Indian Acad. Sci. (Math. Sci.), 123(1),
145-150.
|
-
[21]  | Akrout, K. (2015), Existence of positive solution for
a class of infinite semipositone p-Laplace systems with falling zeros,
International Journal of Mathematics and Computation, 26(4),
74-80.
|
-
[22]  | Afrouzi, G.A. Chung, N.T., and Shakeri, S. (2013),
Existence of positive solutions for kirchhoff type equations, Electronic
Journal of Differential Equations, 2013(180), 1-8.
|