Discontinuity, Nonlinearity, and Complexity
Degree based Topological indices of Subdivision Graph
Discontinuity, Nonlinearity, and Complexity 11(2) (2022) 337--342 | DOI:10.5890/DNC.2022.06.012
Caiyun Wang$^1$, Shumin Zhang$^1$, He Li$^2$
$^1$ School of Mathematics and Statistics, Qinghai Normal University, Xining 810001, China
$^{2}$ School of Computer, Qinghai Normal University, Xining 810001, China
Download Full Text PDF
Abstract
Several degree based topologcal indices are usually used to
characterize chemical compounds. Such as Randi\'{c} index,
the sum-connectivity index, the harmonic index, $ABC$ index, and the geometric-arithmetic index etc.
In the paper, we compute the values about the topological indices of subdivision graph.
References
-
[1]  |
Bondy, J.A. and Murty, U.S.R. (2008), ph{Graph Theory}, GTM 244, Springer.
|
-
[2]  |
Randi{c}, M. (1975), On characterization of molecular branching,
J.
Am. Chem. Soc., 97, 6609-6615.
|
-
[3]  |
Zhou, B. and Trinajsti{c}, N. (2009), On a novel connectivity index,
J.
Math. Chem., 46, 1252-1270.
|
-
[4]  |
Du, Z., Zhou, B., and Trinajsti{c}, N. (2010), Minimum sum-connectivity
indices of trees and unicyclic of a given matching number,
J. Math.
Chem., 47, 842-855.
|
-
[5]  |
Lu\v{c}i{c}, B., Nikoli{c}, S., Trinajsti{c}, N., Zhou, B., and
Ivani\v{s} Turk, S. (2010), Sum-connectivity index, in: I. Gutman, B.
Furtula(Eds.), Novel Molecular Structure Descriptors, Theory
and Applications I, Univ. Kragujevac, Kragujevac. pp.
101-136.
|
-
[6]  |
Lu\v{c}i{c}, B., Trinajsti{c}, N., and Zhou, B. (2009), Comparison
between the sum-connectivity index and product-connectivity index
for benzenoid hydrocarbons, Chem. Phys. Lett.,
475, 146-148.
|
-
[7]  |
Fajtlowicz, S. (1987), On conjectures of Graffiti-II, Congr. Numer.,
60, 187-197.
|
-
[8]  |
Estrada, E., Torres, E., Rodr{i}guez, L., and Gutman, I. (1998),
An atom-bond connecitvity index:
modelling the enthalpy of formation of alkanes, Indian Journal of Chemistry, 37, 849-855.
|
-
[9]  |
Das, K.C. (2010), Atom-bond connectivity index graphs, Discrete Appl.
Math., 158, 1181-1188.
|
-
[10]  |
Das, K.C. and Trinajsti{c}, N. (2010), Comparison between first
geometric-arithmetic index and atom-bond connectivity index,
Chem.
Phys. Lett., 497, 149-151.
|
-
[11]  |
Furtula, B., Graovac, A., and Vuki\v{c}evi{c}, D. (2009), Atom-bond
connectivity index of trees, Discrete Appl. Math.,
157,
2828-2835.
|
-
[12]  |
Graovac, A. and Ghorbaini, M. (2010), A new version of atom-bond
connectivity index, Acta Chim. Slov., 57, 609-612.
|
-
[13]  |
Vuli\v{c}evi{c}, D. and Furtula, B. (2009), Topological index based on the ratios of geometrical and arithmetical means of
end-vertex degrees of edges, Journal of mathematical chemistry,
46, 1369-1376.
|