Discontinuity, Nonlinearity, and Complexity
Energy-Level Spacing Distribution of Quantum Systems via Conformable Operators
Discontinuity, Nonlinearity, and Complexity 11(2) (2022) 325--335 | DOI:10.5890/DNC.2022.06.011
Juan C. Hern\'andez-G\'omez$^1$, Juan E. N\'apoles Vald\'es$^2$, Omar Rosario-Cayetano$^1$, Alberto Fleitas$^1$
$^1$ Facultad de Matem\'aticas, Universidad Aut\'onoma de Guerrero,
Acapulco, Guerrero, M\'exico
$^2$ UNNE, FaCENA, Ave. Libertad 5450, Corrientes 3400, Argentina
Download Full Text PDF
Abstract
In this paper we introduce a Gaussian-like function, as a solution of a Conformable Differential Equation (CDE)
of order $0<\alpha\le 1$, able to describe the nearest-neighbor energy-level spacing distribution of quantum
systems; where $\alpha$ can be identified as the level-repulsion parameter. In addition, we study some
properties of conformable operators and the stability of the solutions of the CDE.
References
-
[1]  |
Ortega, A. and Rosales, J.J. (2018), Newton's law of cooling with fractional conformable derivative, Rev. Mex. Fis., 64, 172.
|
-
[2]  |
Lei, G., Cao, N., Liu, D., and Wang, H. (2018), A non-linear flow model for porous media based on conformable derivative approach, Energies, 11, 2986.
|
-
[3]  |
Bosch, P., Gomez-Aguilar, J.F., Rodriguez, J.M., and Sigarreta, J.M. (2020), Analysis of Dengue fever outbreak by generalized fractional derivative, Fractals, 1-21, https://doi.org/10.1142/S0218348X2040038.
|
-
[4]  |
Ramirez, A., Sigarreta, J.M., and Bory, J. (2020), Fractional information dimensions of complex networks, Chaos, 30, https://doi.org/10.1063/5.0018268.
|
-
[5]  |
Khalil, R., Al Horani, M., Yousef, A., and Sababheh, M. (2014), A new definition of fractional derivative, J. Comput. Appl. Math., 264, 65.
|
-
[6]  |
Almeida, R., Guzowska, M., and Odzijewicz, T. (2016), A remark on local fractional calculus and ordinary derivatives, Open Math., 14, 1122.
|
-
[7]  |
Guzm{a}n, P.M., Langton, G., Lugo, L.M., Medina, J., and N{a}poles Valdes, J.E. (2018), A new definition of a fractional derivative of local type, J. Math. Analysis,
9, 88.
|
-
[8]  |
Abdejjawad, T. (2015), On conformable fractional calculus, J. Comp. Appl. Math., 279, 57.
|
-
[9]  |
Ilie, M., Biazar, J., and Ayati, Z. (2018), Analytical study of exact traveling wave solutions for time-fractional nonlinear Schr\"odinger equations, Opt. Quantum Electron., 50(12), 55, https://doi: 10.1007/s11082-018-1682-y.
|
-
[10]  |
Ilie, M., Biazar, J., and Ayati, Z. (2018), The first integral method for solving some conformable fractional differential equations, Opt. Quantum Electron., 50(2), 55, https://doi.org/10.1007/s11082-017-1307-x.
|
-
[11]  |
Gomez-Aguilar, J.F. (2018), Novel analytical solutions of the fractional Drude model, Optik, 168, 728-740.
|
-
[12]  |
Ali, K.K., Nuruddeen, R.I., and Raslan, K.R. (2018), New hyperbolic structures for the conformable time-fractional variant bussinesq equations, Opt. Quantum Electron., 50(61), https://doi.org/10.1007/s11082-018-1330-6.
|
-
[13]  |
Yepez-Martinez, H. and Gomez-Aguilar, J.F. (2018), Local M-derivative of order $\alpha$ and the modified expansion function method applied to the longitudinal wave equation in a magneto electro-elastic circular rod, Opt. Quantum Electron., 50(375), https://doi.org/10.1007/s11082-018-1643-5.
|
-
[14]  |
\"Ozkan, O. and Kurt, A. (2018), The analytical solutions for conformable integral equations and integro-differential equations by conformable Laplace transform, Opt. Quantum Electron., 50(81), https://doi.org/10.1007/s11082-018-1342-2.
|
-
[15]  |
Rodriguez, J. and Sigarreta, J. (2012), Location of geodesics and isoperimetric inequalities in Denjoy domains. Proceedings of the Edinburgh Mathematical Society, 55(1), 245-269, DOI:10.1017/S0013091509000686.
|
-
[16]  |
Ramirez-Arellano, A., Sigarreta, J.M., and Bory-Reyes, J. (2020), Fractional information dimensions of complex networks, Chaos, 30, https://doi.org/10.1063/5.0018268.
|
-
[17]  |
Fleitas, A., Napoles Valdes, J.E., Rodr{\i}guez, J.M., and Sigarreta, J.M. Note on the generalized conformable derivative. Submitted.
|
-
[18]  |
Abbas, S., Benchohra, M., and Graef, J.R. (2018), Coupled systems of Hilfer fractional differential inclusions in banach spaces, Comm. Pure Appl. Anal., 17, 2479.
|
-
[19]  |
Mainardi, F. (2012), An historical perspective on fractional calculus in linear viscoelasticity, Fract. Calc. Appl. Anal., 15, 712.
|
-
[20]  |
Metha, M.L. (2004), Random matrices, Elsevier, Amsterdam.
|
-
[21]  |
Brody, T.A. (1973), A statistical measure for the repulsion of energy levels, Lett. Nuovo Cimento, 7, 482.
|
-
[22]  |
Izrailev F.M. in Quantum Chaos, Proceedings of the International School of Physics ``Enrico Fermi'', Course CXIX, Varenna, 1991 Casati G, Guarneri I and Smilansky U (eds.)
(North-Holland, Amsterdam, 1993) pp. 265.
|
-
[23]  |
Berry, M.V. and Robnik, M. (1984), Semiclassical level spacings when regular and chaotic orbits coexist, J. Phys. A: Math. Gen., 17, 2413.
|
-
[24]  |
Abul-Magd, A.Y. (1996), Nearest-neighbour spacing distribution of energy levels in the region between integrability and chaos, J. Phys. A: Math. Gen., 29, 1.
|
-
[25]  |
Martnez-Mendoza, A.J., Alcazar-Lopez, A., and Mendez-Bermudez, J.A. (2013), Scattering and transport properties of tight-binding random networks, Phys. Rev. E, 88, 012126.
|
-
[26]  |
Mendez-Bermudez, J.A, Alcazar-Lopez, A., Martinez-Mendoza, A.J., Rodrigues, F.A., and Peron, T.K.D.M. (2015), Universality in the spectral and eigenfunction properties of random networks, Phys. Rev. E, 91, 032122.
|
-
[27]  |
Brody, T.A., Flores, J., French, J.B., Mello, P.A., Pandey, A., and Wong, S.S.M. (1981), Random-matrix physics: spectrum and strength fluctuations, Rev. Mod. Phys., 53, 385.
|
-
[28]  |
Modak, R. and Mukerjee, S. (2014), Finite size scaling in crossover among different random matrix ensembles in microscopic lattice models, New J. Phys., 16, 093016.
|
-
[29]  |
Batistic, B. and Robnik, M. (2013),
Dynamical localization of chaotic eigenstates in the mixed-type systems: spectral statistics in a billiard system after separation of regular and chaotic eigenstates,
J. Phys. A: Math. Theor., 46, 315102.
|
-
[30]  |
Batistic, B., Manos, T., and Robnik, M. (2013), The intermediate level statistics in dynamically localized chaotic eigenstates, Eruphys. Lett., 102, 50008.
|
-
[31]  |
LeCa\"er, G., Male, C., and Delannay, R. (2007), Nearest-neighbour spacing distributions of the $\beta$-Hermite ensemble of random matrices, Physica A, 383, 190.
|
-
[32]  |
Potestio, R., Caccioli, F., and Vivo, P. (2009), Random matrix approach to collective behavior and bulk universality in protein dynamics, Phys. Rev. Lett., 103, 268101.
|
-
[33]  |
Izrailev, F.M. (1990), Simple models of quantum chaos: spectrum and eigenfunction, Phys. Rep., 196, 299.
|
-
[34]  |
Izrailev, F.M. (1989), Intermediate statistics of the quasi-energy spectrum and quantum localisation of classical chaos, J. Phys. A: Math. Gen., 22, 865.
|
-
[35]  |
Casati, G., Izrailev, F.M., and Molinari, L. (1991), Scaling properties of the eigenvalue spacing distribution for band random matrices, J. Phys. A: Math. Gen., 24, 4755.
|
-
[36]  |
Mendez-Bermudez, J.A., Ferraz-de-Arruda, G., Rodrigues, F.A., and Moreno, Y. (2017), Diluted banded random matrices: Scaling behavior of eigenfunction and spectral properties, J. Phys. A: Math. Theor., 50, 495205.
|
-
[37]  |
Sorathia, S., Izrailev, F.M., Zelevinsky, V.G., and Celardo, G.L. (2012), From closed to open one-dimensional Anderson model: Transport versus spectral statistics, Phys. Rev. E, 86, 011142.
|
-
[38]  |
Mendez-Bermudez, J.A., Ferraz-de-Arruda, G., Rodrigues, F.A., and Moreno, Y. (2017), Scaling properties of multilayer random networks, Phys. Rev. E, 96, 012307.
|