Discontinuity, Nonlinearity, and Complexity
A Survey on Sufficient Conditions for Hamiltonian Cycles in Bipartite Digraphs
Discontinuity, Nonlinearity, and Complexity 11(1) (2022) 1--8 | DOI:10.5890/DNC.2022.03.001
Huifen Ge$^1$, Shumin Zhang$^{2}$, Chengfu Ye$^1$
$^1$ School of Computer, Qinghai Normal University, Xining 810001, China
$^{2}$ School of Mathematics and Statistics, Qinghai Normal University, Xining 810001, China
Download Full Text PDF
Abstract
A digraph $D=(V,A)$ is called a bipartite digraph if there exists a
partition $(X,Y)$ of $V(D)$ into two partite sets such that every arc of $D$ has its end-vertices in
different partite sets. It is called balanced if $|X| = |Y|$. If a digraph $D$ has a directed cycle $C$ which
covers all of its vertices, then $D$ is Hamiltonian. This paper mainly introduces some sufficient conditions
for Hamiltonian cycles in balanced bipartite digraph.
References
-
[1]  |
Bang-Jensen, J. and Gutin, G. (2000), Digraphs: Theory, Algorithms and Applications, Springer.
|
-
[2]  |
Dirac, G.A. (1952), Some theorems on abstract graphs,
London Math. Soc., 2(3), 69-81.
|
-
[3]  |
Diestel, R. (2016), Graph Theory, (fifth Edition), Springer.
|
-
[4]  |
Garey, M.R. and Johnson, D.S. (1979), Computers and intractability. W.H. Freeman.
San Francisco.
|
-
[5]  |
Adamus, J. and Adamus, L. (2012), A degree condition for cycles of maximum length in bipartite digraphs,
Discrete Mathematics, 312, 1117-1122.
|
-
[6]  |
Adamus, J., Adamus, L., and Yeo, A. (2014), On the Meyniel condition for hamiltonicity in bipartite digraphs,
Discrete Math and Theoretical Computer Science, 16, 293-302.
|
-
[7]  |
Bermond, J.C. and Thomassen, C. (1981), Cycles in digraphs-a survey,
J. Graph Theory, 5(1), 1-43.
|
-
[8]  |
Amar, D. and Manoussakis, Y. (1990), Cycles and paths of many lengths in bipartite digraphs,
Journal of Combinatorial Theory Ser. B., 50, 254-264.
|
-
[9]  |
Manoussakis, Y. and Milis, I. (1999), A sufficient condition for maximum cycles in bipartite digraphs,
Discrete Mathematics, 207, 161-171.
|
-
[10]  |
Ghouila-Houri, A. (1960), Une condition suffisante d'existence d'un circuit hamiltonien,
Rendus de I' Academie des Sciences Paris Ser. A-B, 25, 495-497.
|
-
[11]  |
Nash-Williams, C.St.J.A. (1969), Hamilton circuits in graphs and digraphs, in ``The many facets of graph
theory'', Springer, Lecture Notes, 110, 237-243.
|
-
[12]  |
Woodall, D.R. (1972), Sufficient conditions for circuits in graphs,
Proceeding London Math. Society, 24, 739-755.
|
-
[13]  |
Meyniel, M. (1973), condition suffisante d'existence d'un circuit hamiltonien dans un graphe oriente,
Journal Combinatorial Theory Ser. B, 14, 137-147.
|
-
[14]  |
Bang-Jensen, J., Gutin, G., and Li, H. (1996), Sufficient conditions for a digraph to be hamiltonian,
J. Graph Theory, 22(2), 181-187.
|
-
[15]  |
Bang-Jensen, J., Guo, Y., and Yeo, A. (1999), A new sufficient condition for a digraph to be hamiltonian,
Discrete Applied Math., 95, 61-72.
|
-
[16]  |
Wang, R. and Wu, L. (2020), A dominating pair condition for a balanced bipartite digraph to be hamiltonian,
Australasian Journal of Combinatorics, 77, 136-143.
|
-
[17]  |
Wang, R., Chang, J., and Wu, L. (2020), A dominated pair condition for a digraph to be hamiltonian,
Discrete Mathematics, 343, 111794.
|
-
[18]  |
H\"{a}ggkvist, R. and Manoussakis, Y. (1989), Cycles and paths in bipartite tournaments with spanning configurations,
Combinatorica, 9(1), 33-38.
|
-
[19]  |
Zhong, W. (1992), A sufficient condition for hamiltonian cycles in bipartite tournaments,
Australasian Journal of Combinatorics, 5, 299-304.
|
-
[20]  |
Gutin, G. (1995), Cycles and paths in semicomplete multipartite digraphs, theorems and algorithms: a survey,
J. Graph Theory, 19(4), 481-505.
|
-
[21]  |
Wang, R. (2017), A sufficient condition for a balanced bipartite digraph to be hamiltonian,
Discrete Mathematics and Theoretical Computer science, 19(3).
|
-
[22]  |
Darbinyan, S.Kh. and Karapetyan, I.A. (2018), On a problem of Wang concerning the hamiltonicity
of bipartite digraphs,
Mathematical Problems of Computer Science, 49, 26-34.
|
-
[23]  |
Darbinyan, S.Kh. (2019), Sufficient conditions for hamiltonian cycles in bipartite digraphs,
Discrete Applied Math, 258, 87-96.
|
-
[24]  |
Adamus, J. (2017), A degree sum condition for hamiltonicity in balanced bipartite digraphs,
Graphs and Combinatorics, 33, 43-51.
|
-
[25]  |
Chv{a}tal, V. (1973), New directions in hamiltonian graph theory, in New directions in the theory of graphs
(F. Harary, ed.). Academic Press, New York. 5(1), 65-95.
|
-
[26]  |
Darbinyan, S.Kh. (1985), Pancyclicity of digraphs with the Meyniel condition,
Studia Sci. Math. Hungar, 20(1-4), 95-117.
|
-
[27]  |
Darbinyan, S.Kh. (1986), On the pancyclicity of digraphs with large semidegrees,
Akad. Nauk Arm. SSR Dokl., 83(3), 99-101.
|
-
[28]  |
H\"{a}ggkvist, R. and Thomassen, C. (1976), On pancyclic digraphs,
Journal of Combinatorial Theory, Series B, 20(1), 20-40.
|
-
[29]  |
Overbeck-Larisch, M. (1977), A theorem on pancyclic-oriented graphs.
Journal of Combinatorial Theory, Series B, 23, 168-173.
|
-
[30]  |
Thomassen, C. (1977), An Ore-type condition implying a digraph to be pancyclic,
Discrete Mathematics, 19, 85-92.
|
-
[31]  |
Beineke, L.W. and Little, C. (1982), Cycles in bipartite tournaments.
Journal of Combinatorial Theory Ser. B, 32(2), 140-145.
|
-
[32]  |
Zhang, K. (1981), Vertex even-pancylicity in bipartite tournaments,
J. Nanjing Univ. Math. Biquarterly, 1, 85-88.
|
-
[33]  |
Gutin, G. (1989), A characterization of vertex pancyclic partly oriented k-partite tournaments,
Vestsi Acad. Navuk BSSR Ser. Fiz.-Mat. Navuk, 2, 41-46.
|
-
[34]  |
Gutin, G. (1995), Characterizations of vertex pancyclic and pancyclic ordinary complete multipartite digraphs,
Discrete Mathematics, 141, 153-162.
|
-
[35]  |
Darbinyan, S.Kh. and Karapetyan, I.A. (2017), On longest non-hamiltonian cycles in digraphs with the
conditions of Bang-Jensen, Gutin and Li,
Discrete Applied Mathematics, 216, 537-549.
|
-
[36]  |
Meszka, M. (2018), New sufficient conditions for bipancyclicity of balanced bipartite digraphs,
Discrete Mathematics, 341, 3237-3240.
|
-
[37]  |
Darbinyan, S.Kh. and Karapetyan, I.A. (2017), A sufficient condition for pre-hamiltonian cycles in bipartite digraphs,
Eleventh International Conference on Computer Science and Information Technologies(CSIT), 101-109.
|
-
[38]  |
Adamus, J. (2018), A Meyniel-type condition for bipancyclicity in balanced bipartite digraphs,
Graphs and Combinatorics, 34, 703-709.
|
-
[39]  |
Darbinyan, S.Kh. (2018), Sufficient conditions for balanced bipartite digraphs to be even pancyclic,
Discrete Applied Math, 238, 70-76.
|
-
[40]  |
Wang, R. and Guo, J. (2017), A note on cycles of maximum length in bipartite digraphs,
Australasian Journal of Combinatorics, 67(1), 1-10.
|