Discontinuity, Nonlinearity, and Complexity
Steiner $4$-Diameter, Maximum Degree and Size of a Graph
Discontinuity, Nonlinearity, and Complexity 10(3) (2021) 571--584 | DOI:10.5890/DNC.2021.09.015
He Li$^1$, Shumin Zhang$^2$, Bo Zhu$^2$, Chengfu Ye$^2$
$^1$ Department of Computer, Qinghai Normal University, Xining, Qinghai 810008, China
$^2$ Department of Mathematical Sciences, Qinghai Normal University, Xining, Qinghai 810008, China
Download Full Text PDF
Abstract
The Steiner $k$-diameter $sdiam_k(G)$ of a graph $G$, introduced by
Chartrand, Oellermann, Tian and Zou in 1989, is a natural
generalization of the concept of classical diameter. When $k=2$,
$sdiam_2(G)=diam(G)$ is the classical diameter. Let
$d,\ell$ and $n$ be natural numbers and $d
Acknowledgments
Supported by the NSFC No.11661068; NSFC No.11801296
NSFQH No.2019-ZJ-921; NSFQH No.2017-ZJ-949Q.
References
-
[1]  |
Bondy, J.A. and Murty, U.S.R. (2008),
{ Graph Theory},
GTM 244, Springer.
|
-
[2]  |
Goddard, W. and Oellrmann, O.R. (2011),
Distance in graphs, in: M. Dehmer (Ed.)
Structural Analysis of Complex Networks, Birkh\"{a}user, Dordrecht,
49--72.
|
-
[3]  |
Chung, F.R.K. (1987),
Diameter of graphs: Old problems and new results,
{ 18th Southeastern Conf. on Combinatorics, Graph Theory and
Computing}.
|
-
[4]  |
Du, D.Z., Lyuu, Y.D., and Hsu, D.F. (1994),
Line digraph iteration and connectivity analysis of de Bruijn and Kautz graphs,
{ IEEE Trans.
Comput.}, 42(5), 612--616.
|
-
[5]  |
Hsu, D.F. (1994),
On container width and length in graphs, groups, and networks,
{ IEICE Transaction on Fundamentals of Electronics,
Communications and Computer Science}, E77-A, 668--680.
|
-
[6]  |
Hsu, D.F. and {\L}uczak, T. (1994),
Note on the $k$-diameter of $k$-regular $k$-connected graphs,
{ Discrete Math.} 133(1-3), 291--296.
|
-
[7]  |
Meyer, F.J. and Pradhan, D.K. (1987),
Flip trees,
{ IEEE
Trans. Computers} 37(3), 472--478.
|
-
[8]  |
Hakimi, S.L. (1971),
Steiner's problem in graph and its implications
{ Networks}, 1(2), 113--133.
|
-
[9]  |
Levi, A.Y. (1971)
Algorithm for shortest connection of a group of graph vertices,
{ Sov. Math. Dokl.}, 12, 1477--1481.
|
-
[10]  |
Hwang, F.K., Richards, D.S., and Winter, P. (1992),
The Steiner Tree Problem,
North-Holland, Amsterdam.
|
-
[11]  |
Garey, M.R. and Johnson, D.S. (1979),
Computers and Intractibility: A Guide to
the Theory of NP-Completeness,
{ IEEE
Trans. Computers}, Freeman $\&$ Company, New York.
|
-
[12]  |
Bollob{a}s, B. (1978), { Extremal Graph Theory},
Acdemic press.
|
-
[13]  |
Homenko, N.P. and Ostroverhii, N.A. (1970),
Diameter-critical graphs (in Russian),
{ Ukrainian Math. J.}, 22, 637--646.
|
-
[14]  |
Homenko, N.P. and Strok, V.V. (1971),
Some combinatorial indentities for sums of composition
coefficient (in Russian),
{ Ukrainian Math. J.}, 23, 830--837.
|
-
[15]  |
Ore, O. (1968),
Diameter in graphs,
{ J. Combin. Theory}, 5, 75--81.
|
-
[16]  |
Watkins, M.E. (1976),
A lower bound for the number of vertices of a graph,
{ Amer. Math. Monthly}, 74, 297.
|
-
[17]  |
Erd\"{o}s, P. and R{e}nyi, A. (1962),
On a problem in the theory of graphs (in Hungarian),
{ Publ. Math. Inst. Hungar. Acad. Sci.}, 7.
|
-
[18]  |
Bollob{a}s, B. (1971), Graphs with a given diameter and maximal
valency and with a minimal number of edges, in: ``Combinatorial
Mathematics and its Applications'' (Welsh, D.J.A., ed.)
{ Academic Press} London and New York), 25--37.
|
-
[19]  |
Erd\"{o}s, P., R{e}nyi, A., and S{o}s, V.T. (1966),
On a problem of graph theory,
{ Studia Sci. Math. Hungar.}, 1, 215--235.
|
-
[20]  |
Dankelmann, P., Swart, H., and Oellermann, O.R. (1999),
Bounds on the Steiner diameter of a graph,
{ Combinatorics,
Graph Theory, and Algorithms, Vol. I, II, New Issues Press},
Kalamazoo, MI.
|
-
[21]  |
Ali, P., Dankelmann, P., and Mukwembi, S. (2012),
Upper bounds on the Steiner diameter of a graph,
{ Discrete
Appl. Math.}, 160(12), 1845--1850.
|
-
[22]  | Mao, Y.P. (2017), {The Steiner $3$-diameter of a graph},
ph {Bull. Iran. Math. Soc.}, 43(2), 439-454
|
-
[23]  |
Chartrand, G., Oellermann, O.R., Tian, S., and Zou, H.B. (1989),
Steiner distance in graphs,
{ {C}asopis pro
p\v{e}stov{a}n{i} matematiky}, 114, 399--410.
|
-
[24]  | Wang, Z., Mao, Y.P., and Li, H.Z. (2018), ph{On the Steiner $4$-Diameter of graph}, Journal of Interconnection Networks,
18(1), 1850002.
|
-
[25]  |
Ali, P. (2013),
The Steiner diameter of a graph with
prescribed girth,
{ Discrete Math.}, 313(12), 1322--1326.
|
-
[26]  |
Bloom, G.S. (1988),
A characterization of graphs of
diameter two,
{ Amer. Math. Monthly}, 95(1), 37--38.
|
-
[27]  |
Buckley, F. and Harary, F. (1990),
Distance in Graphs,
{ Addision-Wesley}, Redwood City, CA.
|
-
[28]  |
C{a}ceresa, J., M{a}rquezb, A., and Puertasa, M.L. (2008),
Steiner distance and convexity in graphs,
{ European J. Combin.}, 29(3), 726--736.
|
-
[29]  |
Chartrand, G., Okamoto, F., and Zhang, P. (2010),
Rainbow Trees in Graphs and Generalized
Connectivity,
{ Networks}, 55(4), 360--367.
|
-
[30]  |
Dankelmann, P., Swart, H.C., and Oellermann, O.R. (2008),
On the average Steiner distance of graphs with prescribed properties,
{ Discrete Appl. Math.}, 79(1-3), 91--103.
|
-
[31]  |
Day, D.P., Oellermann, O.R., and Swart, H.C. (1994),
Steiner Distance-Hereditary Graphs,
{ SIAM J. Discrete Math.}, 7(3), 437--442.
|
-
[32]  |
D'Atri, A. and Moscarini, M. (1988),
Distance-Hereditary Graphs, Steiner Trees, and Connected
Domination,
{ SIAM J. Comput.}, 17(3), 521--538.
|
-
[33]  |
Meyer, F.J. and Pradhan, D.K. (1987),
Flip trees,
{ IEEE
Trans. Computers}, 37(3), 472--478.
|
-
[34]  |
Goddard, W., Oellrmann, O.R., and Swart, H.C. (1994),
Steiner distance stable graphs,
{ Discrete Math.}, 132(1-3), 65--73.
|
-
[35]  |
Mao, Y.
The Steiner diameter of a graph, accepted by
{ Bull.
Iran. Math. Soc.}
|