Discontinuity, Nonlinearity, and Complexity
A Note on Existence of Global Solutions for Impulsive Functional Integrodifferential Systems
Discontinuity, Nonlinearity, and Complexity 10(3) (2021) 397--407 | DOI:10.5890/DNC.2021.09.004
C. Dineshkumar, R. Udhayakumar
Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology,
Vellore - 632 014, Tamilnadu, India
Download Full Text PDF
Abstract
In our manuscript, we research the existence of global solutions for a class of impulsive abstract functional integrodifferential systems with nonlocal conditions. We proved our outcomes by utilizing the Leray-Schauder's Alternative fixed point theorem. Lastly, a model is presented for illustration of theory.
References
-
[1]  | Lakshmikantham, V., Bainov, D.D., and Simeonov, P.S. (1989), { Theory of Impulsive Differential Equations}, World Scientific, Singapore.
|
-
[2]  | Bainov, D.D. and Simeonov, P.S. (1993), { Impulsive Differential Equations: Periodic Solutions and Applications}, Longman Scientific and Technical Group, England.
|
-
[3]  | Chalishajar, D., Ravichandran, C., Dhanalakshmi, S., and Murugesu, R. (2019), Existence of Fractional Impulsive Functional Integro-Differential Equations in Banach Spaces, { Appl. Syst. Innov.}, {\bf 2}(18), 1-17.
|
-
[4]  | Balachandran, K., Park, D.G., and Kwun, Y.C. (1999), Nonlinear integrodifferential equations of Sobolev type with nonlocal conditions in Banach spaces, { Commun. Korean Math. Soc.}, {\bf 14}, 223-231.
|
-
[5]  | Hern\{a}ndez, E. (2002), Existence results for partial neutral integrodifferential equations with nonlocal conditions, { Dynam. Syst. Appl.}, {\bf 11}(2), 241-252.
|
-
[6]  | Hern\{a}ndez, E. and Mckibben, M. (2005), Some comments on: ``Existence of solutions of abstarct nonlinear second-order neutral functional integrodifferential equations", { Comput. Math. Appl.}, {\bf 50}, 655-669.
|
-
[7]  | Kavitha, V., Arjunan, M.M., and Ravichandran, C. (2012), Existence Results for a Second Order Impulsive Neutral Functional Integrodifferential Inclusions in Banach Spaces with Infinite Delay, { J. Nonlinear Sci. Appl}, {\bf 5}, 321-333.
|
-
[8]  | Kavitha, V. Arjunan, M.M., and Ravichandran, C. (2011), Existence results for impulsive systems with nonlocal conditions in Banach spaces, { J. Nonlinear Sci. Appl}, {\bf 4}(2), 138-151.
|
-
[9]  | Machado, J.A., Ravichandran, C., Rivero, M., and Trujillo, J.J. (2013), Controllability results for impulsive mixed-type functional integro-differential evolution equations with nonlocal conditions, { Fixed Point Theo. Appl}, {\bf 2013}(66), 1-16.
|
-
[10]  | Mahmudov, N.I., Murugesu, R., Ravichandran, C., and Vijayakumar, V. (2017), Approximate controllability results for fractional semilinear integro-differential inclusions in Hilbert spaces, { Results in Mathematics}, {\bf 71} , 45-61.
|
-
[11]  | Vijayakumar, V. (2018), Approximate controllability results for impulsive neutral differential inclusions of Sobolev-type with infinite delay, { International Journal of Control}, {\bf 91}(10), 2366-2386.
|
-
[12]  | Vijayakumar, V., Ravichandran, C., Murugesu, R., and Trujillo, J.J. (2014), Controllability results for a class of fractional semilinear integro-differential inclusions via resolvent operators, { Applied Math. Comp.}, {\bf 247}, 152-161.
|
-
[13]  | Vijayakumar, V. (2018) Approximate controllability results for abstract neutral integro-differential inclusions with infinite delay in Hilbert spaces, { IMA J. Math. control Inf.}, {\bf 35}, 297-314.
|
-
[14]  | Vijayakumar, V., Udhayakumar, R., and Dineshkumar, C. (2020), Approximate controllability of second order nonlocal neutral differential evolution inclusions, { IMA J. Math. control Inf.}, {\bf 00}, 1-19, doi:10.1093/imamici/dnaa001.
|
-
[15]  | Yan, Z. and Jia, X. (2016), Approximate controllability
of impulsive fractional stochastic partial integro-differential
inclusions with infinte delay, { IMA J. Math. control Inf.},
{\bf 1-42}, 1590-1639.
|
-
[16]  | Samoilenko, A.M. and Perestyuk, N.A. (1995), { Impulsive Differential Equations}, World Scientific, Singapore.
|
-
[17]  | B. Yan, Boundary value problems on the half-line with impulses and infinite delay, (2001), { Journal of Mathematical Analysis and Appli}, {\bf 259}(1), 94-114.
|
-
[18]  | Benchohra, M., Henderson, J., and Ntouyas, S.K. (2006), { Impulsive Differential Equations and Inclusions, in: Contemporary Mathematics and its Applications}, Vol. 2, Hindawi Publishing Corporation, New York.
|
-
[19]  | Sivasankaran, S., Mallika Arjunan, M., and Vijayakumar, V. (2011), Existence of global solutions for second order impulsive abstract partial differential equations, { Nonlinear Anal. TMA}, {\bf 74}(17), 6747-6757.
|
-
[20]  | Vijayakumar, V. and Henr\{i}quez, H.R. (2018), Existence of global solutions for a class of abstract second order nonlocal Cauchy problem with impulsive conditions in Banach spaces, { Numerical Functional Analysis and Optimization}, {\bf 39}(6), 704-736.
|
-
[21]  | Chang, Y.K. (2007), Controllability of impulsive functional differential systems with infinite delay in Banach spaces, { Chaos Solitons $\&$ Fractals}, {\bf 33}, 1601-1609.
|
-
[22]  | Chang, Y.K., Anguraj, A., and Mallika Arjunan, M. (2009), Controllability of impulsive neutral functional differential inclusions with infinite delay in Banach spaces, { Chaos Solitons $\&$ Fractals}, {\bf 39}(4), 1864-1876.
|
-
[23]  | Byszewski, L. (1991), Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, { J. Math. Anal. Appl.}, { \bf 162}(2), 494-505.
|
-
[24]  | Byszewski, L. and Lakshmikantham, V. (1990), Theorem about existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space, { Appl. Anal.}, {\bf 40}, 11-19.
|
-
[25]  | Cuevas, C., Hern\{a}ndez, E., and Rabelo, M. (2009), The existence of solutions for impulsive neutral functional differential equations, { Comput. Math. Appl.}, {\bf 58}, 744-757.
|
-
[26]  | Hern\{a}ndez, E. and Tanaka Aki, S.M. (2009), Global solutions for abstract functional differential equations with nonlocal conditions, { Elect. J. Quali. Theo. Diff. Equ.}, {\bf 50}, 1-8.
|
-
[27]  | Hern\{a}ndez, E., Tanaka Aki, S.M., and Henr\{\i}quez, H.R. (2008), Global solutions for abstract impulsive partial differential equations, { Comput. Math. Appl.}, {\bf 56}, 1206-1215.
|
-
[28]  | Hern\{a}ndez, E. and Henr\{i}quez, H.R. (2004), Global solutions for a functional second order abstract Cauchy problem with nonlocal conditions, { Annales Polonici Mathematici.}, {\bf 83}, 149-170.
|
-
[29]  | Sivasankaran, S., Mallika Arjunan, M., and Vijayakumar, V. (2011), Existence of global solutions for impulsive functional differential equations with nonlocal conditions, { J. Nonlinear Sci. Appl.}, {\bf 4}(2), 102-114.
|
-
[30]  | Sivasankaran, S., Vijayakumar, V., and Mallika Arjunan, M. (2011), Existence of global solutions for impulsive abstract partial neutral functional differential equations, { Int. J. Nonlinear Sci.} {\bf 11}(4), 412-426.
|
-
[31]  | Vijayakumar, V., Sivasankaran, S., and Mallika Arjunan, M. (2011), Existence of global solutions for second order impulsive abstract functional integrodifferential equations, { Dyn. Contin. Discrete Impuls. Syst.}, {\bf 18}, 747-766.
|
-
[32]  | Pazy, A. (1983), { Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences}, {\bf44}, Springer-Verlag, New York-Berlin.
|
-
[33]  | Hino, Y., Murakami, S., and Naito, T. (1991), { In Functional-differential equations with infinite delay, Lecture notes in Mathematics}, {\bf 1473}, Springer-Verlog, Berlin.
|
-
[34]  | Granas, A. and Dugundji, J. (2003), { Fixed Point Theory}, Springer-Verlag, New York.
|
-
[35]  | Martin, R.H. (1987), { Nonlinear Operators and Differential Equations in Banach Spaces}, Robert E. Krieger Publ. Co., Florida.
|
-
[36]  | Rogovchenko, Y.V. (1997), Impulsive evolution systems: Main results and new trends, { Dynam. Contin. Discrete Impuls. Syst.}, {\bf3}(1), 57-88.
|
-
[37]  | Rogovchenko,Y.V. (1997), Nonlinear impulsive evolution systems and application to population models,\ { J. Math. Anal. Appl.}, {\bf207}(2), 300-315.
|
-
[38]  | Balachandran, K., Park, J.Y., and Chandrasekaran, M. (2002), Nonlocal Cauchy problem for delay integrodifferential equations of Sobolve type in Banach spaces, { Appl. Math. Lett.}, {\bf 15}(7), 845-854.
|
-
[39]  | Ezzinbi, K., Fu, X., and Hilal, K. (2007), Existence and regularity in the $\alpha$-norm for some neutral partial differential equations with nonlocal conditions, { Nonlinear Anal.}, 67, 1613-1622.
|
-
[40]  | Fu, X. and Ezzinbi, K. (2003), Existence of solutions for neutral functional differential evolution equations with nonlocal conditions, { Nonlinear Anal.}, {\bf 4}, 215-227.
|
-
[41]  | Fu, X. (2004), On solutions of neutral nonlocal evolution equations with nondense domain, { J. Math. Anal. Appl.}, {\bf 299}, 392-410.
|