Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


Hamiltonian Perturbation Theory on a Lie Algebra. Application to a non-autonomous Symmetric Top

Discontinuity, Nonlinearity, and Complexity 10(3) (2021) 347--367 | DOI:10.5890/DNC.2021.09.001

Lorenzo Valvo$^1$ , Michel Vittot$^2$

$^1$ Dipartimeno di Matematica, Universita degli Studi di Roma Tor Vergata, Via della Ricerca Scientifica 1 00133 Roma, Italy

$^2$ Aix Marseille Univ, Universite de Toulon, CNRS, CPT, Marseille, France

Download Full Text PDF

 

Abstract

We propose a perturbation algorithm for Hamiltonian systems on a Lie algebra $\mathbb{V}$, so that it can be applied to non-canonical Hamiltonian systems. Given a Hamiltonian system that preserves a subalgebra $\mathbb{B}$ of $\mathbb{V}$, when we add a perturbation the subalgebra $\mathbb{B}$ will no longer be preserved. We show how to transform the perturbed dynamical system to preserve $\mathbb{B}$ up to terms quadratic in the perturbation. We apply this method to study the dynamics of a non-autonomous symmetric Rigid Body. In this example our algebraic transform plays the role of Iterative Lemma in the proof of a KAM-like statement.

References

  1. [1]  Arnold, V.I. (1989), { Mathematical {Methods} of {Classical} {Mechanics}}. Graduate {Texts} in {Mathematics}, Springer-Verlag, 2 edn.
  2. [2]  Morrison, P.J. (1982), Poisson brackets for fluid and plasmas, { Mathematical {Methods} in {Hydrodynamics} and {Integrability} in {Dynamical} {Systems}}, New York, vol.88, p.36, American Institute of Physics.
  3. [3]  Sakurai, J.J. (2017), { Modern {Quantum} {Mechanics}}, Cambridge University Press, 2nd edn.
  4. [4]  Marsden, J.E., Morrison, P.J., and Weinstein, A.J. (1984), The {Hamiltonian} structure of the {BBGKY} hierarchy equations. Marsden, J.E. (ed.), { Fluids and plasmas: geometry and dynamics}, pp. 115-124, American Mathematical Society.
  5. [5]  Marsden, J.E., Montgomery, R., Morrison, P.J., and Thompson, W.B. (1986), Covariant poisson brackets for classical fields, { Annals of Physics}, {\bf 169}, 29-47.
  6. [6]  Littlejohn, R.G. (1982), Hamiltonian perturbation theory in noncanonical coordinates. { Journal of Mathematical Physics}, {\bf 23}, 742-747.
  7. [7]  Kolmogorov, A.N. (1954), On the preservation of conditionally periodic motions for a small change in {Hamilton}s function, { Dokl. Akad. Nauk, SSSR}, {\bf 98}, 527-530.
  8. [8]  Arnold, V.I. (1963), Proof of a theorem by {A}. {N}. {Kolmogorov} on the persistence of quasi- periodic motions under small perturbations of the {Hamiltonian}, { Russian Mathematical Survey}, {\bf 18}.
  9. [9]  Moser, J. (1973), { Stable and {Random} {Motions} in {Dynamical} {Systems}: {With} {Special} {Emphasis} on {Celestial} {Mechanics} ({AM}-77)}, Princeton University Press, rev - revised edn.
  10. [10]  Bost, J.B. (1986), Tores invariants des syst\`{e}mes dynamiques hamiltoniens, { Ast\{e}risque}, vol. 133-134, pp. 113-157.
  11. [11]  DeLaLlave, R., Gonz\{a}lez, A., Jorba, A., and Villanueva, J. (2005), {KAM} theory without action-angle variables, { Nonlinearity}, {\bf 18}, 855-895.
  12. [12]  Li, Y. and Yi, Y. (2002), Persistence of invariant tori in generalized {Hamiltonian} systems, { Ergod. Th. Dynam. Sys.}, {\bf 22}.
  13. [13]  Alishah, H. and DeLaLlave, R. (2012) Tracing {KAM} {Tori} in {Presymplectic} {Dynamical} {Systems}, { Journal of Dynamics and Differential Equations}, {\bf 24}, 685-711.
  14. [14]  Benettin, G., Galgani, L., Giorgilli, A., and Strelcyn, J.-M. (1984), A proof of {Kolmogorov}s theorem on invariant tori using canonical transformations defined by the {Lie} method. { Il Nuovo Cimento B (1971-1996)}, {\bf 79}, 201-223.
  15. [15]  DeLaLlave, R. (2001), A tutorial on {KAM} theory, { Smooth ergodic {Theory} $\&$ its applications}, Providence, vol.69, pp. 175-292, American Math Society.
  16. [16]  Broer, H.W. (2004), {KAM} theory: {The} legacy of {Kolmogorov}s 1954 paper. { Bulletin of the American Mathematical Society}, {\bf 41}, 507-522.
  17. [17]  F\{e}joz, J. (2016), Introduction to {KAM} theory with a view to celestial mechanics. Bergounioux, M., Peyr\{e}, G., Schn\"{o}rr, C., Caillau, J.-B., and Haberkorn, T. (eds.), { Variational {Methods}}, De Gruyter.
  18. [18]  Vittot, M. (2004), Perturbation {Theory} and {Control} in {Classical} or {Quantum} {Mechanics} by an {Inversion} {Formula}, { Journal of Physics A: Mathematical and General}, {\bf 37}, 6337-6357, arXiv: math-ph/0303051.
  19. [19]  Marsden, J.E. and Ratiu, T.S. (2013), { Introduction to mechanics and symmetry: a basic exposition of classical mechanical systems}, vol.17. Springer Science \& Business Media.
  20. [20]  Reed, M. and Simon, B. (1981), { Functional {Analysis}, {Volume} 1}. Academic Press.
  21. [21]  Giorgilli, A. (1995), Quantitative {Methods} in {Classical} {Perturbation} {Theory}, { From {Newton} to chaos: modern techniques for understanding and coping with chaos in {N}-body dynamical system}, pp. 21-38, Plenum Press, a.e. roy e b.d. steves edn.
  22. [22]  Deprit, A. (1967), Free {Rotation} of a {Rigid} {Body} {Studied} in the {Phase} {Plane}, { American Journal of Physics}, {\bf 35}, 424-428.
  23. [23]  Gurfil, P., Elipe, A., Tangren, W., and Efroimsky, M. (2007), The {Serret}-{Andoyer} {Formalism} in {Rigid}-{Body} {Dynamics}: {I}. {Symmetries} and {Perturbations}, { Regular and Chaotic Dynamics}, {\bf 12}, 389-425.
  24. [24]  Arnold, V.I. (1963) Small {Denominators} and problems of stability of motion in {Classical} and {Celestial} {Mechanics}, { Russ. Math. Surv.}, {\bf 18}, 85.
  25. [25]  Pinzari, G. and Chierchia, L. (2010), Properly-degenerate {KAM} theory (following {V}. {I}. {Arnold}). { Discrete and Continuous Dynamical Systems - Series S}, {\bf 3}, 545-578.