Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


Dynamics with Fractals

Discontinuity, Nonlinearity, and Complexity 10(2) (2021) 173--184 | DOI:10.5890/DNC.2021.06.001

Marat Akhmet$^{1}$ , Mehmet Onur Fen$^{2}$, Ejaily Milad Alejaily$^{3}$

$^{1}$ Department of Mathematics, Middle East Technical University, 06800 Ankara, Turkey

$^{2}$ Department of Mathematics, TED University, 06420 Ankara, Turkey

$^{3}$ College of Engineering Technology, Houn, Libya

Download Full Text PDF

 

Abstract

When deterministically extended structures are taken into consideration, it is admissible that fractals are dense both in the nature and in the dynamics. In particular, this is true because fractal structures are closely related to chaos. To make advances in the direction, first of all, one should consider fractals as states of dynamics. If one realizes this approach, fractals will be proved to be dense in the universe, since modeling the real world is based on differential equations and their developments.

References

  1. [1]  Julia, G. (1918), M\{e}moire suv Iit\{e}ration des fonctions rationelles, J. Math. Pures Appl., 8, 47-245
  2. [2]  Fatou, P. (1920), Sur les \{e}quations fonctionnelles, I, II, III. Bull. Soc. Math. France, 47, 161-271 (1919), 48, 33-94, (1920), 48, 208-314.
  3. [3]  Mandelbrot, B.B. (1975), Les Objets Fractals: Forme, Hasard, et Dimension, Flammarion, Paris.
  4. [4]  Barnsley, M.F. (2012), Fractals Everywhere: New Edition, Dover Publication Inc. New York.
  5. [5]  Mitchell, E.W. and Murray S.R. (eds) (2012), Classification and Application of Fractals: New Research, Nova Science Publishers Inc. New York.
  6. [6]  Peitgen, H-O., J\"{u}rgens, H., and Saupe, D. (2004), Chaos and Fractals, Springer-Verlag, New York.
  7. [7]  Sternin, B.Y. and Shatalov, V.E. (1994), Differential Equations on Complex Manifolds, Kluwer Academic Publishers, Dordrecht.
  8. [8]  Batty, M. and Longley, P.A. (1994), Fractal Cities: A Geometry of Form and Function, Academic Press, London.
  9. [9]  Kaandorp, J.A. (2012), Fractal Modelling: Growth and Form in Biology, Springer, New York.
  10. [10]  Zhao, L., Li, W., Geng, L. and Ma, Y. (2011), Artificial Neural Networks Based on Fractal Growth. In: G. Lee (ed.) Advances in Automation and Robotics 2, Lecture Notes in Electrical Engineering 123, 323-330. Springer, Berlin.
  11. [11]  Takayasu, M. and Takayasu, H. (2011), Fractals and Economics. In: R. A. Meyers (ed.) Complex Systems in Finance and Econometrics, 444-463. Springer, New York.
  12. [12]  Pietronero, L. and Tosatti, E. (2012), Fractals in Physics, North-Holland, Amsterdam.
  13. [13]  V\{e}hel, J.L.,Lutton, E., and Tricot, C. (eds), (1997), Fractals in Engineering: From Theory to Industrial Applications, Springer, New York.
  14. [14]  Kigami, J. (2001), Analysis on Fractals, Cambridge Univ. Press, Cambridge.
  15. [15]  Strichartz, R.S. (2006), Differential Equations on Fractals: A Tutorial, Princeton University Press, Princeton.
  16. [16]  Vicsek, T. (1992), Fractal Growth Phenomena, 2nd ed. World Scientific, Singapore
  17. [17]  Barabasi, L. and Stanley, H.E. (1995), Fractal Concepts in Surface Growth, Cambridge University Press, Cambridge.
  18. [18]  Mandelbrot, B.B. (2004), Fractals and Chaos: The Mandelbrot Set and Beyond, Springer, New York.
  19. [19]  Franceschetti, G. and Riccio, D. (2007), Scattering, Natural Surfaces and Fractals, Academic Press eds. Burlington, MA USA.
  20. [20]  Mandelbrot, B.B. (1983), The Fractal Geometry of Nature, Freeman, New York.
  21. [21]  Crownover, R.M. (1995), Introduction to Fractals and Chaos, MA: Jones and Bartlett, Boston.
  22. [22]  Hutchinson, J. (1981), Fractals and self-similarity, Indiana Univ. J. Math. 30, 713-747.
  23. [23]  Barnsley, M.F. and Demko, S. (1985), Iterated function systems and the global construction of fractals, Proc. Roy. Soc. London Ser. A, 399, 243-75,
  24. [24]  Encarnacao, J., Peitgen, H.O., Saka, G., and Englert, G. (1992), Fractal Geometry and Computer Graphics, Springer, Berlin.
  25. [25]  Peitgen, H-O. and Saupe, D. (Eds.) (1988), The Science of Fractal Images, Springer-Verlag, New York.
  26. [26]  Ahlfors, L.V. (2006), Lectures on Quasiconformal Mappings, 2nd ed. Amer. Math. Soc. Providence, RI.
  27. [27]  Falconer, K. (2003), Fractal Geometry: Mathematical Foundations and Applications, 2nd ed. Wiley, Chichester
  28. [28]  Shishikura, M. (1998), The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets, Ann. of Math., 147(2), 225-267.
  29. [29]  Nottale, L. (1993), Fractal Space-Time and Microphysics Towards a Theory of Scale Relativity, World Scientific, Singapore.
  30. [30]  Nottale, L. (2011), Scale Relativity and Fractal Space-Time: A New Approach 315 in Unifying Relativity and Quantum Mechanics, Imperial College Press, London.
  31. [31]  Xu, Z. and Xiao, S. (1997), Fractal dimension of surface ENG and its determinants, In: the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 4, 1570-1573.
  32. [32]  Bak, D., Kim, S.P., Kim, S.K., Soh, K.-S., and Yee, J.H., Fractal Diffraction Grating, ArXiv Physics e-printsarXiv:physics/9802007.
  33. [33]  Casanova, D., Florindo, J.B., Falvo, M., and Bruno, O.M. (2016), Texture analysis using fractal descriptors estimated by the mutual interference of color channels, Inf Sci, 346-347, 58-72.
  34. [34]  Barnsley, M.F. (1986), Fractal functions and interpolation, Constr. Approx., 2, 303-329.
  35. [35]  Massopust, P. (1994), Fractal Functions, Fractal Surfaces, and Wavelets, Academic Press, San Diego.
  36. [36]  Massopust, P. (1997), Fractal functions and their applications, Chaos Soliton. Fract. 8(2), 171-190.
  37. [37]  Luor, D.C. (2018), Fractal interpolation functions with partial self similarity, J. Math. Anal. Appl., 464, 911-923.
  38. [38]  Mazel, D.S. (1994), Representation of discrete sequences with three-dimensional iterated function systems, IEEE Trans. Signal Process, 42, 3269-3271.
  39. [39]  Zhai, M.Y., Fern\{a}ndez-Mart\{\i}nez, J.L., and Rector, J.W. (2011), A new fractal interpolation algorithm and its applications to self-affine signal reconstruction, Fractals, 19, 355-365.
  40. [40]  Manousopoulos, P., Drakopoulos, V., and Theoharis, T. (2011), Parameter identification of 1d recurrent fractal interpolation functions with applications to imaging and signal processing, J. Math. Imaging Vision, 40, 162-170.
  41. [41]  Cochran, W.O., Hart, J.C., and Flynn, P.J. (1998), On approximating rough curves with fractal functions, Proc. Graphics Interface, 1, 65-72.
  42. [42]  Manousopoulos, P., Drakopoulos, V., and Theoharis, T. (2008), Curve fitting by fractal interpolation, In: M. L. Gavrilova and C. Tan (eds.), Transactions on Computational Science I. Lecture Notes in Computer Science, 4750, 85-103, Springer, Berlin, Heidelberg.
  43. [43]  Douady, A. and Hubbard, J.H. (1982), It\eration des polyn\^omes quadratiques complexes, C. R. Acad. Sci. Paris S\er. I. Math., 294, 123-126.
  44. [44]  Peitgen, H.-O., J\"urgens, H., and Saupe, D. (1992), Chaos and Fractals: New Frontiers of Science, Springer, New York.
  45. [45]  Peitgen, H.-O. and Richter, P.H. (1986), The Beauty of Fractals: Images of Complex Dynamical Systems, Springer-Verlag, Berlin, Heidelberg.
  46. [46]  Bohr, T., Cvitanovi{\c}, P., and Jensen, M.H. (1998), Fractal ``aggregates in the complex plane, Europhys. Lett., 6, 445-450.
  47. [47]  Isayeva, O.B., Eliseev, M.V., Rozhnev, A.G., and Ryskin, N.M. (2001), Properties of electron field emission from fractal surface, Solid-State Electronics, 45, 871-877.
  48. [48]  Isaeva, O.B. and Kuznetsov, S.P. (2005), Complex generalization of approximate renormalization group analysis and Mandelbrot set. thermodynamic analogy, Nonlinear Phenomena in Complex Systems, 8, 157-165
  49. [49]  Jonsson, A. and Wallin, H. (1997), Boundary value problems and brownian motion on fractals, Chaos Soliton. Fract., 8(2), 191-205.
  50. [50]  Pancheha, A.P., Puzenko, A.A.m and Puzenko, S.A. (1993), Boundary conditions for the electromagnetic field on a non-differentiable fractal surface, Phys. Lett. A, 182(4-6), 407-410.
  51. [51]  Borodich, F.M. and Volovikov, A.Y. (2000), Surface integrals for domains with fractal boundaries and some applications to elasticity, Proc. Royal Soc. Ser. A, 456, 1-24.
  52. [52]  Wiggins, S. (1988), Global Bifurcation and Chaos: analytical methods, Springer-Verlag, New York, Berlin.
  53. [53]  Guckenheimer, J., Moser, J., and Newhouse, S.E. (1980), Dynamical Systems, Birkh\"auser, Boston.
  54. [54]  Liu, X.Y. and Sawant, P.D. (2002), Determination of the fractal characteristic of nanofiber-network formation in supramolecular materials, Chem. Phys. Chem., 4, 374-377.
  55. [55]  Cattani, C. (2010), Fractals and hidden symmetries in DNA, Math. Prob. Eng., 2010, 1-31.
  56. [56]  Noorani, R. (2017), 3D Printing: Technology, Applications, and Selection, CRC Press, New York.