Discontinuity, Nonlinearity, and Complexity
Evolutionary Dynamics of Zero-sum Games with Degenerate Payoff Matrix and Bisexual Population
Discontinuity, Nonlinearity, and Complexity 10(1) (2021) 43--60 | DOI:10.5890/DNC.2021.03.004
N.N. Ganikhodjaev$^{1}$, U.U. Jamilov$^{2}$ , M. Ladra$^{3}$
$^1$ Department of Computational and Theoretical Sciences, Faculty
of Science, IIUM, 25200 Kuantan, Malaysia
$^2$ V.I. Romanovskiy Institute of Mathematics, 100170, Tashkent, Uzbekistan
$^3$ Department of Algebra, University of Santiago de Compostela, Spain
Download Full Text PDF
Abstract
In this paper we consider the quadratic stochastic operators describing evolution of a bisexual
population. We establish correlation between such operators and evolutionary games, namely demonstrate that Volterra quadratic stochastic operator with
degenerate payoff matrix is non-ergodic and corresponding evolutionary game is rock-paper-scissors game. To prove this statements we study the asymptotic behavior of trajectories of the Volterra quadratic stochastic operators with the non-hyperbolic fixed points.
References
-
[1]  | Hofbauer, J. and Sigmund, K. (2003), Evolutionary game dynamics, { Bulletin of the American Mathematical Society}, {\bf 40}(4), 479-519.
|
-
[2]  | Akin, E. and Losert, V. (1984), Evolutionary dynamics of zero-sum games,
{ J. Math. Biology}, {\bf 20}(3), 231-258.
|
-
[3]  | Ganikhodjaev, N.N., Ganikhodzhaev, R.N., and Jamilov~(Zhamilov), U.U. (2015), Quadratic stochastic operators
and zero-sum game dynamics, { Ergod. Th. and Dynam. Sys.}, {\bf 35}(5), 1443-1473.
|
-
[4]  | Ganikhodjaev, N.N., Saburov, M., and Jamilov, U.U. (2013), Mendelian and non-Mendelian quadratic operators,
{ Appl. Math. Inf. Sci.}, {\bf 7}(5), 1721-1729.
|
-
[5]  | Lyubich, Yu.I. (1992), Mathematical structures in population genetics, {
Biomathematics}, {\bf 22}, Springer-Verlag.
|
-
[6]  |
Ganikhodjaev, N.N., Jamilov, U.U., and Mukhitdinov, R.T. (2014), Non-ergodic quadratic operators of bisexual population,
{ Ukr. Math. Jour.}, {\bf 65}(8), 1282-1291.
|
-
[7]  | Bernstein, S.N. (1924), The solution of a mathematical
problem related to the theory of heredity, { Uchn. Zapiski. NI
Kaf. Ukr. Otd. Mat.}, (1), 83-115 (Russian).
|
-
[8]  | Ganikhodzhaev, R.N. (1993), Quadratic stochastic operators,
Lyapunov function and tournaments, { Acad. Sci. Sb. Math.}, {\bf
76}(2), 489-506.
|
-
[9]  | Ganikhodzhaev, R.N. (1994), A chart of fixed points and
Lyapunov functions for a class of discrete dynamical systems, {
Math. Notes}, {\bf 56}(5-6), 1125-1131.
|
-
[10]  | Ganikhodzhaev, R.N. (2006), Eshmamatova D.B. Quadratic
automorphisms of a simplex and the asymptotic behavior of their
trajectories, { Vladikavkaz. Mat. Zh.}, {\bf 8}(2), 12-28 (Russian).
|
-
[11]  | Jenks, R.D. (1969), Quadratic Differential Systems for Interactive Population Models, { J. Diff. Eqs.},
{\bf 5}, 497-514.
|
-
[12]  | Ulam, S. (1960), { A collection of mathematical problems},
Interscience Publishers, New-York-London.
|
-
[13]  | Zakharevich, M.I. (1978), On behavior of trajectories and the ergodic
hypothesis for quadratic transformations of the simplex,
{ Russian Math. Surveys}, {\bf3}(6), 265-266.
|
-
[14]  | Ganikhodjaev, N.N. and Zanin, D.V. (2004), On a necessary condition for the
ergodicity of quadratic operators defined on the two-dimensional
simplex, { Russian Math.Surveys}, {\bf59}(3), 571-572,
|
-
[15]  | Devaney, R.L. (2003), { An Introduction to Chaotic Dynamical Systems},
Studies in Nonlinearity, Westview Press, Boulder, CO.
|
-
[16]  | Elaydi, S.N. (2000), { Discrete Chaos}. Chapman Hall/CRC, Boca Raton, FL.
|
-
[17]  | Ganikhodjaev, N.N., Jamilov, U.U., and Mukhitdinov, R.T. (2013), On Non-Ergodic Transformations on $S^3,$
Journal of Physics: Conference Series, {\bf 435}, 012005.
|
-
[18]  | Ganikhodzhaev, R.N., Mukhamedov, F.M., and Rozikov, U.A. (2011), Quadratic
stochastic operators: Results and open problems, { Infinite Dimensional Analysis, Quantum Probability
and Related Topics}, {\bf 14}(2), 279-335.
|
-
[19]  | Kesten, H. (1970), Quadratic transformations: A model for population growth, I { Adv. Appl. Prob.,} 2, 1-82.
|
-
[20]  | Lyubich, Yu.I. (1978), Basic concepts and theorems of the evolution genetics of free populations, { Russian Math. Surveys},
26(5), 51-116
|