Discontinuity, Nonlinearity, and Complexity
Homoclinic Solutions in Bazykin’s Predator-Prey Model
Discontinuity, Nonlinearity, and Complexity 9(3) (2020) 339--350 | DOI:10.5890/DNC.2020.09.001
Bashir Al-Hdaibat
Department of Mathematics, Hashemite University, Zarqa 131333, P.O. Box 330127, Jordan
Download Full Text PDF
Abstract
In this paper we derive an explicit second-order approximation of the homoclinic solutions in the Bazykin’s predator-prey model. The analytic solutions are compared with those obtained by numerical continuation.
Acknowledgments
This work was supported by the Hashemite University under Grant NO. 49-36-2017. The author would like to thank the referees for the useful suggestions that have substantially improved the quality of the paper.
References
-
[1]  | Bazykin, A.D. (1976), Structural and dynamic stability of model predator-prey systems, IIASA Research Memorandum, Laxenburg, Austria. |
-
[2]  | Bazykin, A.D., Khibnik, A.I., and Krauskopf, B. (1998), Nonlinear Dynamics of Interacting Populations, World Scientific, London, UK. |
-
[3]  | Yur’evna, R.G. (2013) Mathematical models in biophysics and ecology, Technical report, Institute of Computer Science, Moscow-Izhevsk, Russia. |
-
[4]  | Kuznetsov, Yu.A (2004), Elements of Applied Bifurcation Theory, Springer-Verlag, New York, 3rd edition. |
-
[5]  | Kuznetsov, Yu.A (2011), Practical computation of normal forms on center manifolds at degenerate Bogdanov-Takens bifurcations, International Journal of Bifurcation and Chaos, 15(11), 3535-3546. |
-
[6]  | McGehee, E.A., Schutt, N., Vasquez, D.A., and Peacock-Lopez, E. (2008), Bifurcations, and temporal and spatial patterns of a modified Lotka-Volterra model, International Journal of Bifurcation and Chaos, 18(8), 2223-2248. |
-
[7]  | Banerjee,M., Ghorai, S., andMukherjee N. (2017), Approximated spiral and target patterns in Bazykin’s prey-predator model: Multiscale perturbation analysis, International Journal of Bifurcation and Chaos, 27(3), 1750038. |
-
[8]  | Brauer, F. and Soudack, A.C. (1979), Stability regions and transition phenomena for harvested predator-prey systems, Journal of Mathematical Biology, 7(4), 319-337. |
-
[9]  | Xiao, D. and Ruan, S. (1999), Bogdanov-Takens bifurcations in predator-prey systems with constant rate harvesting, Fields Inst. Commun., 21, 493-506. |
-
[10]  | Sarwardi, S., Haque,M., andMandal, P.K. (2012), Ratio-dependent predator-preymodel of interacting population with delay effect, Nonlinear Dynamics, 69(3), 817-36. |
-
[11]  | Freedman, H.I. andWolkowicz, G.S.K. (1986), Predator-prey systems with group defense: The paradox of enrichment revisited, Bull. Math. Biol., 48, 493-508. |
-
[12]  | Wolkowicz, G.S.K. (1988), Bifurcation analysis of a predator-prey system involving group defense, SIAM J. Appl. Math., 48, 592-606. |
-
[13]  | Mischaikow, K. andWolkowicz, G.S.K. (1990), A predator-prey system involving group defense: A connection matrix approach, Nonlin. Anal., Theory, Methods & Applications, 14, 955-969. |
-
[14]  | Ruan, S. and Xiao, D. (2001), Global analysis in a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math., 61, 1445-1472. |
-
[15]  | Zhu, H., Campbell, S.A., and Wolkowicz, G.S.K.b (2002), Bifurcation analysis of a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math., 63, 636-682. |
-
[16]  | Xiao, D. and Jennings, L. (2005), Bifurcations of a ratio-dependent predator-prey system with constant rate harvesting, SIAM J. Appl. Math., 65, 737-753. |
-
[17]  | Leard, B., Lewis C., and Rebaza, J. (2008), Dynamics of ratio-dependent predator-prey models with nonconstant harvesting. Discrete Contin. Dyn. Syst. Ser. S, 48, 303-315. |
-
[18]  | Peng, G.J., Jiang, Y.L., and Li, C.P. (2009), Bifurcations of a Holling-type II predator-prey system with constant rate harvesting, International Journal of Bifurcation and Chaos, 19(8), 2499-2514. |
-
[19]  | Lenzini, P. and Rebaza, J. (2010), Nonconstant predator harvesting on ratio-dependent predator-prey models. Appl. Math. Sci., 4,791-803. |
-
[20]  | Wang, H., Zhang, H., Sun, Y., and Pang, Y. (2015), Analysis of a Holling II system with frequency-dependent fitnessand constant harvesting rate of prey. Nonlinear Analysis and Differential Equations, 3(4), 155-165. |
-
[21]  | Al-Hdaibat, B., Govaerts, W., Kuznetsov, Y.A., and Meijer, H.G.E. (2016), Initialization of homoclinic solutions near Bogdanov-Takens points: Lindstedt-Poincaré comparedwith regular perturbationmethod, SIAMJ. Applied Dynamical Systems, 15(2), 952-980. |
-
[22]  | Arnold, V.I. (1983), Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, New York, Heidelberg, Berlin. |
-
[23]  | Guckenheimer, J. and Holmes, P. (1983) NonlinearOscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York. |
-
[24]  | Dhooge, A., Govaerts, W., Kuznetsov, Y.A., Meijer, H.G.E., and Sautois, B. (2008), New features of the software MatCont for bifurcation analysis of dynamical systems, Math. Comput. Model. Dyn. Syst., 14(2):147-175. |
-
[25]  | De Witte, V., Govaerts, W., Kuznetsov, Y.A., and Friedman, M. (2012), Interactive initialization and continuation of homoclinic and heteroclinic orbits in MATLAB, ACM Trans. Math. Software, 38(3), 1-34. |
-
[26]  | Kuznetsov, Y.A. (2005), Practical computation of normal forms on center manifolds at degenerate Bogdanov-Takens bifurcations, International Journal of Bifurcation and Chaos, 15(11), 3535-3546. |
-
[27]  | Kuznetsov, Y.A., Meijer, H.G.E., Al-Hdaibat, B., and Govaerts, W. (2015), Accurate approximation of homoclinic solutions in Gray-Scott kinetic model, International Journal of Bifurcation and Chaos, 25(09), 1550125. |
-
[28]  | Kuznetsov, Y.A., Meijer, H.G.E., Al-Hdaibat, B., and Govaerts, W. (2014), Improved homoclinic predictor for Bogdanov-Takens bifurcation, International Journal of Bifurcation and Chaos, 24(4), 1450057. |
-
[29]  | Nayfeh, A.H. (1993), Introduction to Perturbation Techniques, John Wiley & Sons, Inc., Canada. |
-
[30]  | Al-Hdaibat, B. (2015), Computational Dynamical Systems Analysis: Bogdanov-Takens Points and an EconomicModel, PhD thesis, Ghent University, Belgium. |