Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


Study on Stochastic Quasi-Linear Partial Differential Equations of Evolution

Discontinuity, Nonlinearity, and Complexity 9(1) (2020) 1--11 | DOI:10.5890/DNC.2020.03.001

A. Anguraj, K. Ramkumar

Department of Mathematics, PSG College of Arts & Science, Coimbatore-14

Download Full Text PDF

 

Abstract

In this article, the existence and uniqueness of local mild solution of a stochastic counterpart of Tosio Kato’s Quasi-linear partial differential equation with additive cylindrical wiener process in a separable Hilbert space is established using contraction mapping principle.

References

  1. [1]  Kato, T. (1970), Linear evolution equations of “hyperbolic type”, J. Fac.Sci.Univ.Tokyo sect.I, 17, 241-258.
  2. [2]  Kato, T. (1973), Linear evolution equations of “hyperbolic” type II , J. Math Soc. Japan., 25, 648-666.
  3. [3]  Kato, T. (1975), Quasi-linear equations of evolution, with applications to partial differential equations, Spectral Theory and Differential Equations, 448, 25-70.
  4. [4]  Pazy, A. (1983), Semigroups of linear operators and applications to partial differential equations, AppliedMathematical Sciences, 44.
  5. [5]  Dawson, D.A. (1975), Stochastic evolution equations and related measure processes, J. Multivariate Anal., 5, 1-52.
  6. [6]  Prato, G.D. and Zabczyk, J. (1990), Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, U.K..
  7. [7]  Prato, G.D. and Zabczyk, J. (1992), A note on stochastic convolution, Stochastic Anal. Appl., 10, 143-153.
  8. [8]  Seidler, J. (1993), Da Prato-Zabcyk’s maximal inequality revisited, I. Math. Bohem., 118(1), 67-106.
  9. [9]  Pronk, M. andVeraar, M. (2014), A new approach to stochastic evolution equations with adapted drift, J. Diff. Equations, 256, 3634-3683.
  10. [10]  Veraar, M.C. (2010), Non-autonomous stochastic evolution equations and applications to stochastic partial differential equations, J. Evol. Equ., 10(1), 85-127.
  11. [11]  Fernando, B.P.W. and Sritharan, S.S. (2015), Stochastic quasilinear partial differential equations of evolution, Infinite Dimentional Analysis, Quantum Probability and Related Topics, 18(3).
  12. [12]  Suvinthra, M. and Balachandran, K. (2017), Large deviations for nonlinear ito type stochastic integrodifferential equations, Journal of Applied nonlinear Dynamics, 6, 1-15.
  13. [13]  Mabel Lizzy, R., Balachandran,K., and Suvinthra, M. (2017), Controllability of non linear stochastic fractional systems with Levy noise, Discontinuity, Nonlinearity, and Complexity, 6(3), 409-420.
  14. [14]  Haseena, A., Suvinthra, M., and Annapoorani, N. (2017), On Large deviations of stochastic integrodifferential equations with Brownian Motion, Discontinuity, Nonlinearity, and Complexity, 6, 281-294.
  15. [15]  Barbu, V. (1976), Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff International Publishing, Springer-Verlag, Bucherest.
  16. [16]  Fischer, A.E. andMarsden, J.E. (1972), The Einstein evolution equations as a first order quasi-linear symmetric hyperbolic systems I, Comm. Math. Phys., 28, 1-38.
  17. [17]  Gross, L. (1966), The Cauchy problem for the coupled maxwell and dirac equations, Comm. Pure Appl. Math., 19, 1-15.
  18. [18]  Ichikawa, A. (1986), Some inequalities for martingales and stochastic convolution, Stochastic Anal. Appl., 4(3), 329- 339.
  19. [19]  Kato, T. and Ponce, G. (1988), Commutator estimates and the Euler and Navier-stokes equations, Comm. Pure Appl. Math., 41, 891-907.
  20. [20]  Pronk, M. and Veraar,M. (2013), A new approach to stochastic evolution equations with adapted drift.
  21. [21]  Sjoberg, A. (1979), On the Korteweg-de Vries Equation: existence and uniqueness, J. Math. Anal. Appl., 29, 569-579.
  22. [22]  Taylor, M.E. (1991), Pseudodifferential operators and nonlinear PDE, Progress in Mathematics, 100.
  23. [23]  Temam, R. (1975), On the Euler equations of incompressible perfect fluids, J. Functional Analysis, 20(1), 32-43.