Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


Polar Amplification Projected by Energy Balance Model with Nonlinear Parametrization of Outgoing Longwave Radiation

Discontinuity, Nonlinearity, and Complexity 7(2) (2018) 209--223 | DOI:10.5890/DNC.2018.06.009

Dmitry V. Kovalevsky$^{1}$,$^{2}$,$^{3}$, Genrikh V. Alekseev$^{4}$

$^{1}$ Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Fischertwiete 1, 20095 Hamburg, Germany

$^{2}$ Nansen International Environmental and Remote Sensing Centre, 14th Line 7, office 49, Vasilievsky Island, 199034 St. Petersburg, Russia

$^{3}$ Saint Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia

$^{4}$ Arctic and Antarctic Research Institute, Bering str. 38, 199397 St. Petersburg, Russia

Download Full Text PDF

 

Abstract

A linear energy balance model (EBM) of polar amplification (PA) developed by Langen and Alexeev (2007) is modified by replacing the conventional linear parametrization of outgoing longwave radiation (OLR) with a more accurate nonlinear (quadratic) approximation for OLR. The nonlinear version of the model is studied analytically and numerically. The numerical results presented in the paper convincingly demonstrate the importance of adopting the nonlinear approximation for parametrizing the OLR in EBMs. The simulation results yielded by the nonlinear version of the model are visibly different from those provided by the linear model, especially for simulations of climate change in high latitudes and for quantification of PA with dedicated indices.

Acknowledgments

The reported study was supported by the Russian Foundation for Basic Research, research project No. 15-05-03512-a.

References

  1. [1]  Alekseev, G.V., Kuzmina, S.I., Urazgildeeva, A.V., and Bobylev, L.P. (2016), Impact of atmospheric heat and moisture transport on Arctic warming in winter, Fundamental and Applied Climatology, 1, 43-63 (in Russian).
  2. [2]  Alexeev, V.A. and Jackson, C.H. (2013), Polar amplification: is atmospheric heat transport important? Climate Dynamics, 41, 533-547.
  3. [3]  Bekryaev, R.V., Polyakov, I.V., and Alexeev, V.A. (2010), Role of polar amplification in long-term surface air temperature variations and modern Arctic warming, Journal of Climate, 23, 3888-3906.
  4. [4]  Dufour, A., Zolina, O., and Gulev, S.K. (2016), Atmosphericmoisture transport to the Arctic: assessment of reanalyses and analysis of transport components, Journal of Climate, 29, 5061-5081.
  5. [5]  Johannessen, O.M., Kuzmina, S.I., Bobylev, L.P., and Miles, M.W. (2016), Surface air temperature variability and trends in the Arctic: new amplification assessment and regionalisation, Tellus A, 68, 28234.
  6. [6]  Langen, P.L. and Alexeev, V.A. (2007), Polar amplification as a preferred response in an idealized aquaplanet GCM, Climate Dynamics, 29, 305-317.
  7. [7]  Meleshko, V.P., Johannessen, O.M., Baidin, A.V., Pavlova, T.V., and Govorkova, V.A. (2016), Arctic amplification: does it impact the polar jet stream? Tellus A, 68, 32330.
  8. [8]  Ciani, D., Carton, X., Bashmachnikov, I., Chapron, B., and Perrot, X. (2015), Influence of deep vortices on the ocean surface, Discontinuity, Nonlinearity, and Complexity, 4, 281-311.
  9. [9]  Dijkstra, H.A. (2005), Nonlinear Physical Oceanography: A Dynamical Systems Approach to the Large-Scale Ocean Circulation and El Niño, Second Edition, Kluwer Acad. Publishers: Dordrecht/Norwell, Mass.
  10. [10]  Ghil, M. (2016), A mathematical theory of climate sensitivity or, How to deal with both anthropogenic forcing and natural variability? In: Climate Change: Multidecadal and Beyond, World Scientific Series on Asia-Pacific Weather and Climate, 6, Chih-Pei Chang, M. Ghil, M. Latif, and J.M. Wallace (eds.),World Scientific: New Jersey, 31-52.
  11. [11]  IPCC (2013), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.), Cambridge University Press: Cambridge, United Kingdom and New York, NY, USA.
  12. [12]  Lohmann, G. (2011), Abrupt climate change modelling, In: Extreme Environmental Events. Complexity in Forecasting and Early Warning, R.A. Meyers (ed.), Springer: New York, 1-21.
  13. [13]  Pedlosky, J. (1987), Geophysical Fluid Dynamics, Second Edition, Springer-Verlag: New York.
  14. [14]  Harvey, L.D.D. (1988), A semianalytic energy balance climate model with explicit sea ice and snow physics, Journal of Climate, 1, 1065-1085.
  15. [15]  Kiehl, J.T. (1992), Atmospheric general circulation modeling, In: Climate System Modeling, K.E. Trenberth (ed.), Cambridge University Press, 319-369.
  16. [16]  Geoffroy, O., Saint-Martin, D., Olivié, D.J.L., Voldoire, A., Bellon, G., and Tytéca, S. (2013), Transient climate response in a two-layer energy-balance model. Part I: Analytical solution and parameter calibration using CMIP5 AOGCM experiments, Journal of Climate, 26, 1841-1857.
  17. [17]  Rose, B.E.J. and Marshall, J. (2009), Ocean heat transport, sea ice, and multiple climate states: insights from energy balance models, Journal of the Atmospheric Sciences, 66, 2828-2843.
  18. [18]  Wu, W. and North, G.R. (2007), Thermal decay modes of a 2-D energy balance climate model, Tellus A, 59, 618-626.
  19. [19]  Budyko, M. (1969), The effect of solar radiation variations on the climate of the Earth. Tellus, 21, 611-619.
  20. [20]  Sellers, W.D. (1969), A global climatic model based on the energy balance of the earth-atmosphere system, Journal of Applied Meteorology, 8, 392-400.
  21. [21]  Mokhov, I.I. and Petoukhov, V.K. (1978), Parametrizacija uhodjashhej dlinnovolnovoj radiacii dlja klimaticheskih modelej [Parametrization of Outgoing Longwave Radiation for Climate Models], Moscow: IAP, USSR Academy of Sciences (preprint, in Russian).
  22. [22]  North, G.R., Cahalan, R.F., and Coakley, J.A. (1981), Energy balance climate models, Reviews of Geophysics and Space Physics, 19, 91-121.
  23. [23]  Alekseev, G.V. (1982), Vzaimodejstvie okeana i atmosfery kak termodinamicheskij process [Atmosphere-ocean interaction as a thermodynamic process], Transactions (Trudy) of AARI, 383, 25-34 (in Russian).
  24. [24]  Alekseev, G.V. and Podgorny, I.A. (1990), Simulation of advective global climate fluctuations, In: Research activities in atmospheric and oceanic modeling / C.J. Boer. GAS/JSC Working Group in Numerical Experimentation. 1990. Report 14. WMO/TD. 332. 7.24-7.25.
  25. [25]  Alekseev, G.V. and Podgorny, I.A. (1991), Advektivno-radiacionnye kolebanija klimata v sisteme atmosfera-okeansusha [Advective-radiative climate oscillations in the system atmosphere-ocean-land surface], Izvestiya of the USSR Academy of Sciences, Atmospheric and Oceanic Physics, 27, 1120-1129 (in Russian).
  26. [26]  Alekseev, G.V., Podgorny, I.A., and Svyashchennikov, P.N. (1990), Advektivno-radiacionnye kolebanija klimata [Advective-radiative climate oscillations], Transactions (Doklady) of the USSR Academy of Sciences, 315(4), 824-827 (in Russian).
  27. [27]  Alekseev, G.V. and Svyashchennikov, P.N. (1991), Estestvennaja izmenchivost' harakteristik klimata Severnoj poljarnoj oblasti i severnogo polusharija [Natural Variability of Climate Characteristics of the Northern Polar Region and the Northern Hemisphere], Gidrometeoizdat: Leningrad (in Russian).
  28. [28]  Kovalevsky, D.V. (2016), Nonlinear parametrizations of outgoing longwave radiation in zero-dimensional energy balance models, Discontinuity, Nonlinearity, and Complexity, 5, 239-249.
  29. [29]  Warren, S.G. and Schneider, S.H. (1979), Seasonal simulation as a test for uncertainties in the parameterizations of a Budyko-Sellers zonal climate model, Journal of the Atmospheric Sciences, 36, 1377-1391.
  30. [30]  Hind, A., Zhang, Q., and Brattström, G. (2016), Problems encountered when defining Arctic amplification as a ratio, Scientific Reports, 6, 30469.
  31. [31]  Moss, R.H., Edmonds, J.A., Hibbard, K.A., Manning, M.R., Rose, S.K., van Vuuren, D.P., Carter, T.R., Emori, S., Kainuma, M., Kram, T., Meehl, G.A., Mitchell, J.F.B., Nakicenovic, N., Riahi, K., Smith, S.J., Stouffer, R.J., Thomson, A.M.,Weyant, J.P., andWilbanks, T.J. (2010), The next generation of scenarios for climate change research and assessment, Nature, 463, 747-756.
  32. [32]  van Vuuren, D.P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G.C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S.J., and Rose, S.K. (2011), The representative concentration pathways: an overview, Climatic Change, 109, 5-31.