Discontinuity, Nonlinearity, and Complexity
How the Minimal Poincaré Return Time Depends on the Size of a Return Region in a Linear Circle Map
Discontinuity, Nonlinearity, and Complexity 5(4) (2016) 355--364 | DOI:10.5890/DNC.2016.12.002
N. Semenova; E. Rybalova; V. Anishchenko
Saratov State University, Saratov, 410012, Russia
Download Full Text PDF
Abstract
It is found that the step function of dependence of the minimal Poincaré return time on the size of a return region τinf(ε) for the linear circle map with an arbitrary rotation number can be approximated analytically. All analytical results are confirmed by numerical simulation.
Acknowledgments
This work was partly supported by the RFBR (Grant No. 15-02-02288).
References
-
[1]  | Nemytskii, V.V. and Stepanov V.V. (1989), Qualitative Theory of Differential Equations, Dover Publ. |
-
[2]  | Afraimovich, V. (1997), Pesin's dimension for Poincaré recurrences, Chaos, 7, 12〞20. |
-
[3]  | Afraimovich, V., Ugalde, E., and Urias, J. (2006), Fractal Dimension for Poincaré Recurrences, Elsevier. |
-
[4]  | Afraimovich, V. and Zaslavsky, G. (1997), Fractal and multifractal properties of exit times and Poincaré recurrences, Phys. Rev. E, 55, 5418-5426. |
-
[5]  | Penné, V., Saussol, B., and Vaienti, S. (1998), Fractal and statistical characteristics of recurrence times, J. de Physique (Paris) Proc. of the conference §Disorders and Chaos§, Rome, 8, 163-171. |
-
[6]  | Anishchenko, V., Astakhov, S., Boev, Y., Biryukova, N., and Strelkova, G. (2013), Statistics of Poincaré recurrences in local and global approaches, Commun. in Nonlinear Sci. and Numerical Simul., 18, 3423-3435. |
-
[7]  | Anishchenko V., Boev, Y., Semenova, N., and Strelkova, G. (2015), Local and global approaches to the problem of Poincaré recurrences. Applications in nonlinear dynamics, Phys. Rep., 587, 1-39. |
-
[8]  | Kuznetsov, S. (2001), Dynamical Chaos, Fizmatlit, Moscow (in Russian). |
-
[9]  | Pikovsky A., Rosenblum, M., and Kurths, J. (2002), Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press. |
-
[10]  | Rand, D., Ostlund, S., Sethna, J., and Siggia, E. (1982), Universal transition from quasiperiodicity to chaos in dissipative systems, Phys.Rev.Lett., 49, 132-135. |
-
[11]  | Boyland, P. (1986), Bifurcations of circle maps: Arnold's tongues, bistability and rotation intervals, Commun. Math. Phys., 106, 353-381. |
-
[12]  | Semenova, N.I. and Anishchenko, V.S. (2015), Fibonacci stairs and the Afraimovich-Pesin dimension for a stroboscopic section of a nonautonomous van der Pol oscillator, Chaos, 25, 073111. |
-
[13]  | Anishchenko V., Semenova, N., and Vadivasova, T. (2015), Poincaré Recurrences in the Circle Map: Fibonacci stairs., Discontinuity, Nonlinearity and Complexity, 4, 111-119. |
-
[14]  | Semenova, N., Vadivasova, T., Strelkova, G., and Anishchenko,V. (2015), Statistical properties of Poincar∩e recurrences and Afraimovich-Pesin dimension for the circle map, Commun. Nonlinear Sci. Numer. Simul., 22, 1050〞1061. |
-
[15]  | Slater, N. (1967), Gaps and steps for the sequence nθ mod 1, Proc. Camb. Philos. Soc. 63, 1115-1123. |
-
[16]  | Pettofrezzo A.J., and Byrkit, D.R. (1970), Elements of number theory, Prentice-Hall. |
-
[17]  | Buric, N., Rampioni, A., and Turchetti, G. (2005), Statistics of Poincar∩e recurrences for a class of smooth circle maps, Chaos, Solut. & Fractals 23 1829-1840. |