Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


Existence of Stationary Solutions for some Systems of Integro-Differential Equations

Discontinuity, Nonlinearity, and Complexity 5(1) (2016) 75--84 | DOI:10.5890/DNC.2016.03.008

Vitali Vougalter$^{1}$, Vitaly Volpert$^{2}$

$^{1}$ Department of Mathematics, University of Toronto, Toronto, Ontario, M5S 2E4, Canada

$^{2}$ Institute Camille Jordan, UMR 5208 CNRS, University Lyon 1, Villeurbanne, 69622, France

Download Full Text PDF

 

Abstract

The article deals with the existence of solutions of a system of nonlocal reaction-diffusion equations which appears in population dynamics. The proof relies on a fixed point technique. Solvability conditions for elliptic operators in unbounded domains which fail to satisfy the Fredholm property are being used.

References

  1. [1]  Alfimov, G.L., Medvedeva, E.V., and Pelinovsky, D.E. (2014),Wave Systems with an Infinite Number of Localized TravelingWaves, Phys. Rev. Lett., 112, 054103, 5pp.
  2. [2]  Amrouche, C., Girault, V., and Giroire, J. (1997), Dirichlet and Neumann exterior problems for the n-dimensional Laplace operator. An approach in weighted Sobolev spaces, J. Math, Pures Appl., 76, 55-81.
  3. [3]  Amrouche, C. and Bonzom, F. (2008),Mixed exterior Laplace's problem, J. Math. Anal. Appl., 338, 124-140.
  4. [4]  Benkirane, N. (1988), Propriété d'indice en th∩eorie Holderienne pour des opérateurs elliptiques dans Rn, CRAS, 307, Série I, 577-580.
  5. [5]  Bessonov, N., Reinberg, N., and Volpert, V. (2014), Mathematics of Darwins Diagram, Math. Model. Nat. Phenom., 9(3), 5-25.
  6. [6]  Bolley, P. and Pham, T.L. (1993), Propriété d'indice en théorie Holderienne pour des opérateurs différentiels elliptiques dans Rn, J. Math. Pures Appl., 72, 105-119.
  7. [7]  Bolley, P. and Pham, T.L. (2001), Propriété d'indice en théorie Hölderienne pour le problème extérieur de Dirichlet, Comm. Partial Differential Equations, 26(1-2), 315-334.
  8. [8]  Cuccagna, S., Pelinovsky, D., and Vougalter, V. (2005),Spectra of positive and negative energies in the linearized NLS problem, Comm. Pure Appl. Math., 58(1), 1-29.
  9. [9]  Ducrot, A., Marion, M., and Volpert, V. (2005), Systemes de réaction-diffusion sans propriété de Fredholm, CRAS, 340, 659-664.
  10. [10]  Ducrot, A., Marion, M., and Volpert, V.(2008), Reaction-diffusion problems with non Fredholm operators, Advances Diff. Equations, 13(11-12), 1151-1192.
  11. [11]  Lieb, E and Loss, M.(1997), Analysis. Graduate Studies in Mathematics, 14, American Mathematical Society, Providence.
  12. [12]  Volpert, V. (2011), Elliptic partial differential equations. Volume 1. Fredholm theory of elliptic problems in unbounded domains, Birkhauser.
  13. [13]  Vougalter, V.(2010), On threshold eigenvalues and resonances for the linearized NLS equation, Math. Model. Nat. Phenom., 5(4), 448-469.
  14. [14]  Volpert, V., Kazmierczak, B., Massot, M., and Peradzynski, Z. (2002), Solvability conditions for elliptic problems with non-Fredholm operators, Appl. Math., 29(2), 219-238.
  15. [15]  Vougalter, V. and Volpert,V. (2011), Solvability conditions for some non-Fredholm operators, Proc. Edinb. Math. Soc. (2), 54 (1), 249-271.
  16. [16]  Vougalter, V. and Volpert, V. (2010), On the solvability conditions for some non Fredholm operators, Int. J. Pure Appl. Math., 60(2), 169-191.
  17. [17]  Vougalter, V. and Volpert, V. (2012), On the solvability conditions for the diffusion equation with convection terms, Commun. Pure Appl. Anal., 11(1), 365-373.
  18. [18]  Vougalter, V. and Volpert,V. (2010), Solvability relations for some non Fredholm operators,Int. Electron. J. Pure Appl. Math. , 2(1), 75-83.
  19. [19]  Volpert, V. and Vougalter, V. (2011), On the solvability conditions for a linearized Cahn-Hilliard equation, Rend. Istit. Mat. Univ. Trieste, 43, 1-9.
  20. [20]  Vougalter, V. and Volpert, V. (2011), On the existence of stationary solutions for some non-Fredholm integrodifferential equations, Doc. Math., 16, 561-580.
  21. [21]  Vougalter, V. and Volpert,V. (2012), Solvability conditions for a linearized Cahn-Hilliard equation of sixth order, Math. Model. Nat. Phenom., 7(2), 146-154.
  22. [22]  Vougalter, V. and Volpert,V. (2012), Solvability conditions for some linear and nonlinear non-Fredholm elliptic problems, Anal. Math. Phys., 2(4), 473-496.
  23. [23]  Vougalter, V. and Volpert,V. (2015), Existence of stationary solutions for some nonlocal reaction-diffusion equations, Dyn. Partial Differ. Equ., 12(1), 43-51.
  24. [24]  Vougalter, V. and Volpert,V. (2015), Existence of stationary solutions for some integro-differential equations with superdiffusion. Preprint.