Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


Fractional Calculus: Models, Algorithms, Technology

Discontinuity, Nonlinearity, and Complexity 4(4) (2015) 383--389 | DOI:10.5890/DNC.2015.11.002

J.A. Tenreiro Machado

Institute of Engineering, Polytechnic of Porto, Dept. of Electrical Engineering, R. Dr. António Bernardino de Almeida, 431 4249-015 Porto, Portugal

Download Full Text PDF

 

Abstract

In the last three decades Fractional Calculus (FC) became an area of intense research and development. The accompanying poster illustrates the present day major achievements in the application of FC in physics, engineering and biology.

Acknowledgments

The author would like to thank the collaboration of the following contributors: Dumitru Baleanu, Gary Bohannan, Riccardo Caponetto, Piotr Duch, Mark Edelman, Christophe Farges, Hans Haubold, Clara Ionescu, Virginia Kiryakova, Patrick Lanusse, António Lopes, Guido Maione, Pierre Melchior, Francesco Mainardi, Rachid Malti, Xavier Moreau, Raoul Nigmatullin, Manuel Ortigueira, Piotr Ostalczyk, Alain Oustaloup, Ivo Petráš, Jocelyn Sabatier, Dragan Spasi´c, József Tar, Duarte Valério, Stéphane Victor, Bruce West.

References

  1. [1]  Machado, J.T., Kiryakova, V., and Mainardi, F. (2011), Recent history of fractional calculus, Communications in Nonlinear Science and Numerical Simulations, 16(3), 1140-1153.
  2. [2]  Machado, J.T., Galhano, A.M., and Trujillo, J.J. (2013), Science metrics on fractional calculus development since 1966, Fractional Calculus and Applied Analysis, 16(2), 479-500.
  3. [3]  Machado, J.T., Galhano, A.M., and Trujillo, J.J. (2014), On development of fractional calculus during the last fifty years, Scientometrics, 98(1), 577-582.
  4. [4]  Machado, J.T., Kiryakova, V., and Mainardi, F. (2010), A poster about the old history of fractional calculus, Fractional Calculus and Applied Analysis, 13(4), 447-454.
  5. [5]  Machado, J.T., Kiryakova, V., and Mainardi, F. (2010), A poster about the recent history of fractional calculus, Fractional Calculus and Applied Analysis, 13(3), 329-334.
  6. [6]  Rogosin, S. and Mainardi, F. (2014), George William Scott Blair - the pioneer of fractional calculus in rheology, Communications in Applied and Industrial Mathematics, 6(1).
  7. [7]  Valério, D., Machado, J.T., and Kiryakova, V. (2014), Some pioneers of the applications of fractional calculus, Fractional Calculus & Applied Analysis, 17(2), 552-578.
  8. [8]  Bia, P., Caratelli, D., Mescia, L., Cicchetti, R., Maione, G., and Prudenzano F. (2015), A novel FDTD formulation based on fractional derivatives for dispersive Havriliak-Negami media, Signal Processing, 107, 312-318.
  9. [9]  Garrappa, R., Maione, G., and Popolizio, M. (2014), Time-domain simulation for fractional relaxation of Havriliak- Negami type, In:International Conference on Fractional Differentiation and its Applications, Catania, Italy.
  10. [10]  Sommacal, L., Melchior, P., Cabelguen, J.M., Oustaloup, A., and Ijspeert, A. (2008), Fractional multi-models of the gastrocnemius frog muscle, Journal of Vibration and Control, 14(9-10), 1415-1430.
  11. [11]  Victor, S., Malti, R., Garnier, H., and Oustaloup, A. (2013), Parameter and differentiation order estimation in fractional models, Automatica 49(4), 926-935.
  12. [12]  Mainardi, F., Raberto, M., Gorenflo, R., and Scalas, E. (2000), Fractional calculus and continuous-time finance ii: the waiting-time distribution, Physica [A, 287(3-4), 468-481.
  13. [13]  Machado, J.A.T., Pinto, C.M., and Lopes, A.M. (2015), A review on the characterization of signals and systems by power law distributions, Signal Processing, 107, 246-253.
  14. [14]  West, B., Bologna, M.,and Grigolini, P. (2003), Physics of fractal operators, Springer, New York.
  15. [15]  West, B.J. (2014), Colloquium: Fractional calculus view of complexity: A tutorial, Reviews of Modern Physics, 86(4), 1169-1184.
  16. [16]  Magin, R., Ortigueira, M.D., Podlubny, I., and Trujillo, J. (2011), On the fractional signals and systems, Signal Processing, 91(3), 350-371.
  17. [17]  Ortigueira, M.D. (2008), An introduction to the fractional continuous-time linear systems: the 21st century systems, IEEE Circuits and Systems Magazine, 8(3), 19-26.
  18. [18]  Ortigueira, M.D. (2010), On the fractional linear scale invariant systems, IEEE Transactions on Signal Processing, 58(12), 19-26.
  19. [19]  Ortigueira, M.D. (2011), Fractional Calculus for Scientists and Engineers, Lecture Notes in Electrical Engineering, Springer, Berlin Heidelberg.
  20. [20]  Ortigueira, M.D., Coito, F.J., and Trujillo, J.J. (2015), Discrete-time differential systems, Signal Processing, 107, 198-217.
  21. [21]  Sheng, H., Chen, Y., and Qiu, T. (2012), Fractional Processes and Fractional-Order Signal Processing: Techniques and Applications, Signals and Communication Technology, Springer-Verlag, London.
  22. [22]  Valério, D., Ortigueira, M.D., and da Costa, J.S. (2008), Identifying a transfer function from a frequency response, ASME Journal of Computational and Nonlinear Dynamics, 3(2), 021207.
  23. [23]  Baleanu, D. and Trujillo, J.J. (2007), On exact solutions of a class of fractional Euler-Lagrange equations, Nonlinear Dynamics, 52(4), 891-897.
  24. [24]  Edelman, M. (2013), Universal fractional maps and cascade of bifurcations type attractors, Chaos, 23(3), 033127.
  25. [25]  Edelman, M. (2014), Caputo standard α-family of maps: Fractional difference vs. fractional, Chaos, 24(2), 023137.
  26. [26]  Edelman, M., Tarasov, V.E. (2009), Fractional standard map. Physics Letters A, 374(2), 279-285.
  27. [27]  Rabei, E.M., Nawafleh, K.I., Hijjawi, R.S., Muslih, S.I., and Baleanu, D. (2007), The Hamilton formalism with fractional derivatives, Journal of Mathematical Analysis and Applications, 327(2), 891-897.
  28. [28]  Wu, G.C., and Baleanu, D. (2014), Discrete fractional logistic map and its chaos, Nonlinear Dynamics, 75(1-2), 283- 287.
  29. [29]  Hilfer, R. (2000), Application of fractional calculus in physics, World Scientific, Singapore.
  30. [30]  Klafter, J., Shlesinger, M.F., and Zumofen, G. (1996), Beyond Brownian motion, Physics Today, 49(2), 33-39.
  31. [31]  Metzler, R. and Klafter, J. (2000), The random walk's guide to anomalous diffusion: a fractional dynamics approach, Physics Reports, 339(1), 1-77.
  32. [32]  Metzler, R., Klafter, J. (2004), The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, Journal of Physics A: Mathematical and General, 37(31), R161-R208.
  33. [33]  Shlesinger, M., Zaslavsky, and Joseph Klafter, G. (1993), Strange kinetics, Nature, 363, 31-37.
  34. [34]  Sokolov, I.M., and Klafter, J. (2005), From diffusion to anomalous diffusion: A century after Einstein's Brownian motion, Chaos: An Interdisciplinary Journal of Nonlinear Science, 15, 026,103.
  35. [35]  Sokolov, I.M., Klafter, J., and Blumen, A. (2002), Fractional kinetics, Physics Today, 55(11), 48-54.
  36. [36]  Zaslavsky, G. (2005), Hamiltonian chaos and fractional dynamics, Oxford University Press, Oxford.
  37. [37]  Caponetto, R., Dongola, G., Fortuna, L., and Petráš, I. (2010), Fractional Order Systems: Modeling and Control Applications, World Scientific, Singapore.
  38. [38]  Feytout, B., Lanusse, P., Sabatier, J., and Gracia, S. (2013), Robust CRONE design for a variable ratio planetary gearing in a variable speed wind turbine, Asian Journal of Control, 15(3), 806-818.
  39. [39]  Kósi, K., Dineva, A., and Tar, J. (2013), Increased cycle time achieved by fractional derivatives in the adaptive control of the Brusselator model, In: 2013 IEEE 11th International Symposium on AppliedMachine Intelligence and Informatics. Herl'any, Slovakia.
  40. [40]  Luo, Y. and Chen, Y. (2012), Fractional order motion controls, Wiley, Chichester.
  41. [41]  Machado, J.A.T. (1997), Analysis and design of fractional-order digital control systems, Systems Analysis-Modelling- Simulation, 27(2-3), 107-122.
  42. [42]  Monje, C., Chen, Y., Vinagre, B., Xue, D.,and Feliu, V. (2010), Fractional-order systems and controls: Fundamentals and applications. Springer, London.
  43. [43]  Oustaloup, A. (2014), Diversity and Non-integer Differentiation for System Dynamics. Wiley-ISTE, Croydon, UK.
  44. [44]  Oustaloup, A., Sabatier, J., and Lanusse, P. (1999), From fractal robustness to CRONE control, Fractional Calculus and Applied Analysis, 2(1), 1-30.
  45. [45]  Oustaloup, A., Sabatier, J., Lanusse, P. (2013), CRONE control: Principles, extensions and applications, Journal of Applied Nonlinear Dynamics, 2(3), 207-223.
  46. [46]  Petráš, I. (2011), Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation, Springer, Heidelberg.
  47. [47]  Podlubny, I. (1998), Fractional differential equations, Volume 198: An Introduction to Fractional Derivatives, Fractional Differential Equations, toMethods of Their Solution, Mathematics in Science and Engineering. Academic Press, San Diego.
  48. [48]  Valério, D. and Sá da Costa, J. (2004), Ninteger: a fractional control toolbox forMatlab, In: Fractional Differentiation and its Applications, Bordeaux, France.
  49. [49]  Valério, D. and Sá da Costa, J. (2013), An Introduction to Fractional Control, IET, Stevenage. ISBN 978-1-84919- 545-4
  50. [50]  Lanusse, P., Malti, R., and Melchior, P. (2013), CRONE control system design toolbox for the control engineering community: tutorial and case study. Philosophical Transactions of the Royal Society A, 371, 20120149.
  51. [51]  Ionescu, C. and Machado, J.T. (2010), Mechanical properties and impedance model for the branching network of the seiva system in the leaf of Hydrangea macrophylla, Nonlinear Dynamics, 60(1-2), 207-216.
  52. [52]  Jesus, I.S., Machado, J.A.T., and Cunha, J.B. (2008), Fractional electrical impedances in botanical elements, Journal of Vibration and Control, 14(9-10), 1389-1402.
  53. [53]  Lopes, A.M. and Machado, J.A.T. (2014), Fractional order models of leaves. Journal of Vibration and Control, 20(7), 998-1008.
  54. [54]  Pellet, M., Melchior, P., Abdelmoumen, Y., and Oustaloup, A. (2011), Fractional thermal model of the lungs using Havriliak-Negami function, In: ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference,Washington, DC, USA..
  55. [55]  Magin, R. (2006), Fractional Calculus in Bioengineering. Begell House Inc., Redding.
  56. [56]  Daou, R.A.Z.,Moreau, X., and Francis, C. (2012), Effect of hydropneumatic components nonlinearities on the CRONE suspension, IEEE Transactions on Vehicular Technology, 61(2), 466-474.
  57. [57]  Oustaloup, A., Moreau, X., and Nouillant, M. (1996), The CRONE suspension, Control Engineering Practice, 4(8), 1101-1108.
  58. [58]  Ionescu, C. (2012), Phase constancy in a ladder model of neural dynamics, Transactions on Systems Man and Cybernetics Part A-Systems and Humans, 42(6), 1543-1551.
  59. [59]  Ionescu, C. (2013), The human respiratory system: an analysis of the interplay between anatomy, structure, breathing and fractal dynamics, Series in BioEngineering, Springer-Verlag, London.
  60. [60]  Ionescu, C., and Keyser, R.D. (2009), Relations between fractional-order model parameters and lung pathology in chronic obstructive pulmonary disease, IEEE Transactions on Biomedical Engineering, 56(4), 978-987.
  61. [61]  Ionescu, C., Machado, J.T., and Keyser, R.D. (2011), Is multidimensional scaling suitable for mapping the input respiratory impedance in subjects and patients? Computer Methods and Programs in Biomedicine, 104(3), e189-e200.
  62. [62]  Barbosa, R.S., Machado, J.A.T., and Silva, M.F. (2008), Discretization of complex-order algorithms for control applications, Journal of Vibration and Control, 14(9-10), 1349-1361.
  63. [63]  Hartley, T.T., Adams, J.L., and Lorenzo, C.F. (2005), Complex-order distributions. In: Proc. of the ASME 2005 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Long Beach, CA.
  64. [64]  Hartley, T.T., Lorenzo, C.F., Adams, J.L. (2005), Conjugated-order differintegrals. In: Proc. of the ASME 2005 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Long Beach, CA.
  65. [65]  Machado, J.T. (2013), Optimal controllers with complex order derivatives, Journal of Optimization Theory and Applications, 156(1), 2-12.
  66. [66]  Oustaloup, A., Levron, F., Nanot, F., and Mathieu, B. (2000), Frequency band complex non integer differentiator: characterization and synthesis, IEEE Transactions on Circuits and Systems I, 47(1), 25-40.
  67. [67]  Cugnet, M., Sabatier, J., Laruelle, S., Grugeon, S., Sahut, B., Oustaloup, A., and Tarascon, J.M. (2010), On lead-acidbattery resistance and cranking-capability estimation, IEEE Transactions on Industrial Electronics, 57(3), 909-917.
  68. [68]  Sabatier, J., Merveillaut, M., Francisco, J. and Guillemard, F. (2014), Lithium-ion batteries modelling involving fractional differentiation, Journal of Power Sources, 262, 36-43.
  69. [69]  Daou, R.A.Z., Moreau, X., and Francis, C. (2013), Effects of the temperature variation on the behavior of a fractional system realized in the electrical domain, Fractional Calculus and Applied Analysis, 16(3), 520-537.
  70. [70]  Maachou, A., Malti, R., Melchior, P., Battaglia, J.L., Oustaloup, A., and Hay, B. (2014), Nonlinear thermal system identification using fractional Volterra series. Control Engineering Practice, 29, 50-60.
  71. [71]  Victor, S., Melchior, P., and Oustaloup, A. (2010), Robust path tracking using flatness for fractional linear MIMO systems: A thermal application, Computers And Mathematics With Applications, 59(5), 1667-1678.
  72. [72]  Machado, J.T., Costa, A.C., Quelhas, M.D. (2011), Fractional dynamics in DNA. Communications in Nonlinear Science and Numerical Simulations, 16(8), 2963-2969.
  73. [73]  Oustaloup, A. (2012), From diversity to unexpected dynamic performances: A simplified presentation almost in layman's terms, In:2nd International Conference on Communications, Computing and Control Applications, Marseilles, France.
  74. [74]  Tarasov, V. (2010), Fractional dynamics: Applications of fractional calculus to dynamics of particles, fields and media. Springer, New York.
  75. [75]  Jesus, I.S. and Machado, J.A.T. (2009), Development of fractional order capacitors based on electrolyte processes, Nonlinear Dynamics, 56(1-2), 45-55.
  76. [76]  Machado, J.A.T. and Galhano, A.M. (2012), Fractional order inductive phenomena based on the skin effect, Nonlinear Dynamics, 68(1-2), 107-115.
  77. [77]  Bohannan, G.W. (2008), Analog fractional order controller in temperature and motor control applications, Journal of Vibration and Control, 14(9-10), 1487-1498.
  78. [78]  Mainardi, F. and Garrappa, R. (2014), On complete monotonicity of the Prabhakar function and non-Debye relaxation in dielectrics, Journal of Computational Physics,
  79. [79]  de Oliveira, E.C., Mainardi, F., and Jr, J.V. (2011),Models based on Mittag-Leffler functions for anomalous relaxation in dielectrics, The European Physical Journal, Special Topics, 193(1), 161-171.
  80. [80]  Westerlund, S. (2002), Dead Matter has Memory! Causal Consulting, Kalmar, Sweden.
  81. [81]  Engheta, N. (1996), On fractional calculus and fractional multipoles in electromagnetism, IEEE Trans. Antennas Propagation, 44(4), 554-566.
  82. [82]  Engheta, N.(1997), On the role of fractional calculus in electromagnetic theory. IEEE Antennas and Propagation Magazine, 39(4), 35-46 (1997).
  83. [83]  Engheta, N. (1998), Fractional curl operator in electromagnetics, Microwave and Optical Technology Letters, 17(2), 86-91.
  84. [84]  Machado, J.A.T. and Jesus, I.S. (2004), A suggestion from the past? Fractional Calculus & Applied Analysis, 7(4), 403-407.
  85. [85]  Machado, J.A.T., Jesus, I.S., Galhano, A., Cunha, J.B. (2006), Fractional order electromagnetics. Signal Processing, 86(10), 2637-2644.
  86. [86]  Klafter, J., Lim, S.C., and Metzler, R. (2002), Fractional Dynamics, Recent Advances, World Scientific, Singapore.
  87. [87]  Meerschaert, M.M. and Sikorskii, A. (2011). Stochastic Models for Fractional Calculus. Studies in Mathematics, 43, Walter de Gruyter, Gottingen.
  88. [88]  Carpinteri, A. and Mainardi, F. (1997), Fractals and Fractional Calculus in Continuum Mechanics. Springer-Verlag, Wien and New York.
  89. [89]  Nigmatullin, R.R., and Machado, J.A.T. (2013), Self-similar property of random signals: Solution of inverse problem, Journal of Applied Nonlinear Dynamics, 2(2), 141-150.
  90. [90]  Machado, J.A.T. (2012), Entropy analysis of fractional derivatives and their approximation, Journal of Applied Nonlinear Dynamics, 1(1), 109-112.
  91. [91]  Machado, J.A.T. (2014), Fractional order generalized information, Entropy, 16(4), 2350-2361.
  92. [92]  Luchko, Y., and Mainardi, F. (2014), Cauchy and signaling problems for the time-fractional diffusion-wave equation, ASME Journal of Vibration and Acoustics, 136(5), 051008/1-7.
  93. [93]  Mainardi, F. (1996), Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos, Solitons and Fractals, 7(9), 1461-1477.
  94. [94]  Agrawal, O.P. (2002), Formulation of Euler-Lagrange equations for fractional variational problems, Journal of Mathematical Analysis and Applications, 272(1), 368-379.
  95. [95]  Baleanu, D., Diethelm, K., Scalas, E., and Trujillo, J.J. (2012), Fractional Calculus: Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos, World Scientific Publishing Company, Singapore.
  96. [96]  Baleanu, D., and I. Muslih, S. (2005), Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives, Physica Scripta, 72(2-3), 119-121.
  97. [97]  Malinowska, A.B. and Torres, D.F.M. (2012), Introduction to the Fractional Calculus of Variations, Imperial College Press, Singapore.
  98. [98]  Koeller, R.C. (1984), Applications of fractional calculus to the theory of viscoelasticity, Journal of Applied Mechanics, 51(2), 299-307.
  99. [99]  Mainardi, F. (2010), Fractional calculus and waves in linear viscoelasticity: An introduction to mathematical models, Imperial College Press, London.
  100. [100]  Mainardi, F. and Spada, G. (2011), Creep, relaxation and viscosity properties for basic fractional models in rheology, The European Physical Journal Special Topics, 363(1), 133-160.
  101. [101]  Meral, F., Royston, T., and Magin, R. (2010), Fractional calculus in viscoelasticity: An experimental study, Communications in Nonlinear Science and Numerical Simulations, 15(4), 939-945.
  102. [102]  Klimek, M. (2009), On Solutions of Linear Fractional Differential Equations of a Variational Type, Czestochowa University of Technology, Czestochowa.
  103. [103]  Kiryakova, V.S. (1994), Generalized Fractional Calculus and Applications, Research Notes in Math. Series, Vol. 301, Pitman Longman, Harlow & Wiley, New York.
  104. [104]  Mathai, A. and Haubold, H.J. (2008), Special Functions for Applied Scientists, Springer, New York.
  105. [105]  Mathai, A., Saxena, R.K., and Haubold, H.J. (2010), The H-Function. Springer, New York.
  106. [106]  Diethelm, K. (2010), The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, Series on Complexity, Nonlinearity and Chaos, Springer, Heidelberg.
  107. [107]  Lino, P. and Maione, G. (2013), Design and simulation of fractional-order controllers of injection in CNG engines In:7th IFAC Symposium on Advances in Automotive Control, Tokyo, Japan.
  108. [108]  Lino, P., and Maione, G. (2013), Fractional order control of the injection system in a CNG engine, In: 2013 European Control Conference, Zürich, Switzerland.
  109. [109]  Lino, P. and Maione, G. (2013), Loop-shaping and easy tuning of fractional-order proportional integral controllers for position servo systems, Asian Journal of Control, 15(3), 796-805.
  110. [110]  Lino, P. and Maione, G. (2014), Switching fractional-order controllers of common rail pressure in compressed natural gas engines, In:19th IFAC World Congress, Cape Town, South Africa.
  111. [111]  Saponaro, F., Lino, P., and Maione, G. (2014), A dynamical model of electro-injectors for common rail diesel engines, In: 22nd Mediterranean Conference on Control and Automation, Palermo, Italy.
  112. [112]  Saponaro, F., Lino, P., and Maione, G. (2014), Fractional modeling the wave pressure propagation in diesel injection systems, In: International Conference on Fractional Differentiation and its Applications, Catania, Italy.
  113. [113]  Ceglie, C., Maione, G., and Striccoli, D. (2013), Periodic feedback control for streaming 3D videos in last-generation cellular networks, In: 5th IFAC International Workshop on Periodic Control Systems, Caen, France.
  114. [114]  Ceglie, C., Maione, G., and Striccoli, D. (2013), Statistical analysis of long-range dependence in three-dimensional video traffic. In: Mathematical Methods in Engineering International Conference, Porto, Portugal.
  115. [115]  Nigmatullin, R.R., Ceglie, C., Maione, G., and Striccoli, D. (2014), Reduced fractional modeling of 3D video streams: the FERMA approach. Nonlinear Dynamics.
  116. [116]  Nigmatullin, R.R., Ceglie, C., Maione, G., nd aStriccoli, D.(2014), Statistics of fractionalmoments applied to 3D video streams, In: International Conference on Fractional Differentiation and its Applications, Catania, Italy .
  117. [117]  Atanacković, T.M., Pilipović, S., Stanković, B., and Zorica, D. (2014), Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes, Wiley-ISTE.
  118. [118]  Farges, C., Moze, M., and Sabatier, J. (2010), Pseudo-state feedback stabilization of commensurate fractional order systems, Automatica, 46(10), 1730-1734.
  119. [119]  Grahovac, N.M. and Spasić, D.T. (2014),Multivalued fractional differential equations as a model for an impact of two bodies, Journal of Vibration and Control, 20(7), 1017-1032.
  120. [120]  Magin, R.L., Abdullah, O., Baleanu, D., and Zhou, X.J. (2008), Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation, Journal of Magnetic Resonance, 190(2), 255-270.
  121. [121]  Malti, R. (2013), A note on lp-norms of fractional systems, Automatica, 49(9), 2923-2927.
  122. [122]  Mehdinejadiani, B., Naseri, A.A., Jafari, H., Ghanbarzadeh, A., and Baleanu, D. (2013), A mathematical model for simulation of a water table profile between two parallel subsurface drains using fractional derivatives, Computers & Mathematics with Applications, 66(5), 785-794.
  123. [123]  Sabatier, J., Farges, C., and Trigeassou, J.C. (2014), Fractional systems state space description: Some wrong ideas and proposed solutions, Journal of Vibration and Control, 20(7), 1076-1084.
  124. [124]  Ostalczyk, P., Brzezinski, D.W., Duch, P., Łaski,M., and Sankowski, D. (2013), The variable, fractional-order discretetime PD controller in the IISv1.3 robot arm control, Central European Journal of Physics, 11(6), 750-759.
  125. [125]  Yousfi, N., Melchior, P., Lanusse, P., Derbel, N., and Oustaloup, A. (2013), Decentralized CRONE control of nonsquare multivariable systems in path-tracking design, Nonlinear Dynamics, 76(1), 447-457.
  126. [126]  Popović, J.K., Spasić, D.T., Tošić, J., Kolarović, J.L., Malti, R., Mitić, I.M., Pilipović, S., and Atanacković, T.M. (2015), Fractional model for pharmacokinetics of high dose methotrexate in children with acute lymphoblastic leukaemia, Communications in Nonlinear Science and Numerical Simulation, 22(1-3), 451-471.
  127. [127]  Challamel, N., Zorica, D., Atanacković, T.M., and Spasić, D.T. (2013), On the fractional generalization of eringen's nonlocal elasticity for wave propagation, Comptes Rendus Mécanique, 341(3), 298-303.
  128. [128]  Machado, J.A.T. (2003), A probabilistic interpretation of the fractional-order differentiation, Fractional Calculus & Applied Analysis, 6(1), 73-80.
  129. [129]  Ortigueira, M.D. (2008), Fractional central differences and derivatives, Journal of Vibration and Control, 14(9-10), 1255-1266.
  130. [130]  Ortigueira, M.D. (2010), The fractional quantum derivative and its integral representations, Communications in Nonlinear Science and Numerical Simulation, 15(4), 956-962.
  131. [131]  Ortigueira, M.D. and Trujillo, J.J. (2012), A unified approach to fractional derivatives, Communications in Nonlinear Science and Numerical Simulation, 17(12), 5151-5157.
  132. [132]  Podlubny, I. (2002), Geometric and physical interpretation of fractional integration and fractional differentiation, Fractional Calculus & Applied Analysis, 5(4), 367-386.
  133. [133]  Yang, X.J., (2012), Advanced Local Fractional Calculus and Its Applications, World Science Publisher.
  134. [134]  Yang, X.J., Baleanu, D., Srivastava, H.M. (2015), Local Fractional Integral Transforms and Their Applications, Academic Press.