Discontinuity, Nonlinearity, and Complexity
Coarse-Graining and Master Equation in a Reversible and Conservative System
Discontinuity, Nonlinearity, and Complexity 4(2) (2015) 199--208 | DOI:10.5890/DNC.2015.06.007
Felipe Urbina; Sergio Rica; Enrique Tirapegui
$^{1}$ Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Avda. Diagonal las Torres 2640, Peñalolén,Santiago, Chile.
$^{2}$ Departamento de Física, Universidad de Chile, Avda. Blanco Encalada 2002, Santiago, Chile.
Download Full Text PDF
Abstract
A coarse graining process is applied to a Ising like model with a conservative and a reversible dynamics. It is shown that, under some assumptions, this coarse graining leads to a tractable probability transfer matrix of finite size which provides a master equation for a coarse graining probability distribution. Some examples are discussed.
References
-
[1]  | Nicolis, G. and Nicolis, C. (1988).Master-equation approach to deterministic chaos, Physical Review A 38, 427-433. |
-
[2]  | Nicolis, G., Martinez, S. and Tirapegui, E. (1991). Finite coarse-graining and Chapman-Kolmogorov equation in conservative dynamical systems, Chaos, Solitons and Fractals, 1, 25-37. |
-
[3]  | Vichniac, G. (1984), Simulating Physics with Cellular Automata, Physica, D 10, 96-116. |
-
[4]  | Pomeau, Y. (1984), Invariant in cellular automata, Journal of Physics A: Mathematical and General , 17 L415-L418. |
-
[5]  | Herrmann , H. (1986). Fast algorithm for the simulation of Ising models, Journal of Statistical Physics 45, 145-151. |
-
[6]  | Takesue, S (1987). Reversible Cellular Automata and Statistical Mechanics, Physical Review Letters 59, 2499-4503. |
-
[7]  | Herrmann, H.J., Carmesin, H.O. and Stauffer, D. (1987). Periods and clusters in Ising cellular automata, Journal of Physics A: Mathematical and General , 20, 4939-4948. |
-
[8]  | Goles, E. and Rica, S. (2011), Irreversibility and spontaneous appearance of coherent behavior in reversible systems, The European Physical Journal B, D 62, 127-137. |
-
[9]  | Onsager, L. (1944). Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition, Physical Review 65, 117-149. |
-
[10]  | Yang, C.N. (1952). The Spontaneous Magnetization of a Two-Dimensional Ising Model, Physical Review 85, 808-816. |