Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


Solvability in the Sense of Sequences for Some Non-fredholm Elliptic Problems

Discontinuity, Nonlinearity, and Complexity 2(4) (2013) 389--399 | DOI:10.5890/DNC.2013.11.007

Vitaly Volpert$^{1}$; Vitali Vougalter$^{2}$

$^{1}$ Institute Camille Jordan, UMR 5208 CNRS, University Lyon 1, Villeurbanne, 69622, France

$^{2}$ Department ofMathematics and Applied Mathematics, University of Cape Town, Private Bag, Rondebosch 7701, South Africa

Download Full Text PDF

 

Abstract

We establish solvability in the sense of sequences in the appropriate H2 spaces for certain linear nonhomogeneous elliptic problems involving Schrödinger type operators without Fredholm property using the technique developed in our preceding work [23]. We show the existence of bounded solutions for certain nonlinear Lippmann-Schwinger equations.

References

  1. [1]  Vougalter, V., Volpert, V. (2011), Solvability conditions for some non Fredholm operators, Proc. Edinb. Math. Soc. (2), 54(1), 249-271.
  2. [2]  Vougalter, V., Volpert, V. (2010), On the solvability conditions for some non Fredholm operators, Int. J. Pure Appl. Math., 60(2), 169-191.
  3. [3]  Vougalter, V., Volpert, V. (2010), Solvability relations for some non Fredholm operators, Int. Electron. J. Pure Appl. Math., 2(1), 75-83.
  4. [4]  Vougalter, V., Volpert, V. (2011), On the existence of stationary solutions for some non-Fredholm integrodifferential equations, Doc. Math., 16, 561-580.
  5. [5]  Vougalter, V., Volpert, V. (2012), On the solvability conditions for the diffusion equation with convection terms, Commun. Pure Appl. Anal., 11(1), 365-373.
  6. [6]  Vougalter, V., Volpert, V. (2012), Solvability conditions for some linear and nonlinear non-Fredholm elliptic problems, Anal. Math. Phys., 2(4), 473-496.
  7. [7]  Volpert, V., Vougalter, V. (2011), On the solvability conditions for a linearized Cahn-Hilliard equation, Rend. Istit. Mat. Univ. Trieste, 43, 1-9.
  8. [8]  Vougalter, V., Volpert, V. (2012), Solvability conditions for a linearized Cahn-Hilliard equation of sixth order, Math. Model. Nat. Phenom., 7(2), 146-154.
  9. [9]  Volpert, V., Vougalter, V. (2012), On the existence of stationary solutions for some systems of non-Fredholm integro-differential equations, Disc., Nonlin. and Complex., 1(2), 85-98.
  10. [10]  Vougalter, V. (2013), Solvability conditions for some systems of nonlinear non-Fredholm elliptic equations, Disc., Nonlin. and Complex., 2(2), 159-165.
  11. [11]  Volpert, V. (2011), Elliptic Partial Differential Equations. Volume 1. Fredholm Theory of Elliptic Problems in Unbounded Domains, Birkhäuser, 2011.
  12. [12]  Vougalter, V., Volpert, V. (2010), Solvability conditions for some systems with non Fredholm operators, Int. Electron. J. Pure Appl. Math., 2(3), 183-187.
  13. [13]  Lieb, E., Loss, M. (1977), Analysis. Graduate Studies in Mathematics, 14, American Mathematical Society, Providence.
  14. [14]  Jonsson, B.L.G., Merkli, M. , Sigal, I.M., and Ting, F., Applied Analysis, In preparation.
  15. [15]  Cycon, H.L., Froese, R.G., Kirsch, W., and Simon, B. (1987), Schrödinger Operators with Application to Quantum Mechanics and Global Geometry, Springer-Verlag, Berlin.
  16. [16]  Kato, T.(1965/1966), Wave operators and similarity for some non-selfadjoint operators, Math. Ann., 162, 258- 279.
  17. [17]  Rodnianski, I., Schlag, W. (2004), Time decay for solutions of Schrödinger equations with rough and timedependent potentials, Invent. Math., 155(3), 451-513.
  18. [18]  Reed, M., Simon, B. (1979), Methods of Modern Mathematical Physics, III: Scattering Theory, Academic Press, New York.
  19. [19]  Serov, V. (2007), Inverse Born approximation for the nonlinear two-dimensional Schrödinger operator, Inverse Problems, 23(3), 1259-1270.
  20. [20]  Ducrot, A., Marion, M., and Volpert, V. (2005), Systemes de réaction-diffusion sans propriété de Fredholm, CRAS, 340, 659-664.
  21. [21]  Ducrot, A., Marion, M., and Volpert, V. (2008), Reaction-diffusion problems with non Fredholm operators, Advances Diff. Equations, 13(11-12), 1151-1192.
  22. [22]  Volpert, V., Kazmierczak, B., Massot, M., Peradzynski, Z. (2002), Solvability conditions for elliptic problems with non-Fredholm operators, Appl. Math., 29(2), 219-238.
  23. [23]  Volpert, V., Vougalter, V. (2013), Solvability in the Sense of Sequences for Some Nonredholm Operators, 2013 (160), 1-16. 1-16.