Skip Navigation Links
Journal of Vibration Testing and System Dynamics

C. Steve Suh (editor), Pawel Olejnik (editor),

Xianguo Tuo (editor)

Pawel Olejnik (editor)

Lodz University of Technology, Poland

Email: pawel.olejnik@p.lodz.pl

C. Steve Suh (editor)

Texas A&M University, USA

Email: ssuh@tamu.edu

Xiangguo Tuo (editor)

Sichuan University of Science and Engineering, China

Email: tuoxianguo@suse.edu.cn


Stochastic Global Dynamics of a Duffing Oscillator with a Symmetry-Breaking Parameter

Journal of Vibration Testing and System Dynamics 9(2) (2025) 169--177 | DOI:10.5890/JVTSD.2025.06.007

Kaio C. B. Benedetti$^{1}$, Paulo B. Gon\c{c}alves$^{2}$, Stefano Lenci$^{3}$, Giuseppe Rega$^{4}$

$^{1}$ School of Civil and Environmental Engineering, Federal University of Goi'{a}s, Goi^{a}nia, Brazil

$^{2}$ Department of Civil and Environmental Engineering, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil

$^{3}$ Department of Civil and Building Engineering, and Architecture, Polytechnic University of Marche, Ancona, Italy

$^{4}$ Department of Structural and Geotechnical Engineering, Sapienza University of Rome, Italy

Download Full Text PDF

 

Abstract

The symmetric Duffing oscillator is well studied in literature and may describe a plethora of events in sciences and engineering, including systems with one or two potential wells. However, in many applications ranging from quantum physics to engineering, a symmetry-breaking effect described by a quadratic nonlinear term is an important feature, and the magnitude of the quadratic term is often unknown. Here the influence of a nondeterministic quadratic term on the global dynamics of a Duffing oscillator with a double potential well is investigated. To this end, the Adaptative Ulam Method is employed, refining the complex basins' boundaries and allowing the analysis of nondeterministic effects. Depending on the forcing magnitude and frequency, the system may exhibit intra or cross-well periodic, quasi-periodic, or chaotic motions.

References

  1. [1]  Duffing, G. (1921), Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und ihre technische Bedeutung. Sammlung Vieweg. Heft 41/42, Braunschweig 1918. VI+134 S. ZAMM - J. Appl. Math. Mech. / Zeitschrift für Angew. Math. und Mech. 1, 72–73. https://doi.org/10.1002/zamm.19210010109.
  2. [2]  Kovacic, I. and Brennan, M.J. (2011), The Duffing Equation: Nonlinear Oscillators and their Behaviour, John Wiley \& Sons, Ltd, Chichester, UK.
  3. [3]  Kovacic, I. (2020), Nonlinear Oscillations, Springer International Publishing, Cham.
  4. [4]  Rega, G. (2020), Nonlinear dynamics in mechanics and engineering: 40 years of developments and Ali H. Nayfeh's legacy, Nonlinear Dynamics, 99, 11–34. https://doi.org/10.1007/s11071-019-04833-w.
  5. [5]  Agarwal, V., Yorke, J.A., and Balachandran, B. (2020), Noise-induced chaotic-attractor escape route, Nonlinear Dynamics, 65, 1–11. https://doi.org/10.1007/s11071-020-05873-3.
  6. [6]  Lenci, S. and Rega, G. (2004), Global optimal control and system-dependent solutions in the hardening Helmholtz–Duffing oscillator, Chaos, Solitons \& Fractals, 21, 1031–1046. https://doi.org/10.1016/S0960-0779(03)00387-4.
  7. [7]  Norenberg, J.P., Luo, R., Lopes, V.G., Peterson, J.V.L.L., and Cunha Jr, A. (2023), Nonlinear analysis of compensated asymmetric energy harvester, In XIX International Symposium on Dynamic Problems of Mechanics (DINAME 2023).
  8. [8]  Wang, W., Cao, J., Bowen, C.R., Inman, D.J., and Lin, J. (2018), Performance enhancement of nonlinear asymmetric bistable energy harvesting from harmonic, random and human motion excitations, Applied Physics Letters, 112, 213903. https://doi.org/10.1063/1.5027555.
  9. [9]  Zhou, J.X., Aliyu, D.S.M., Aurell, E., and Huang, S. (2012), Quasi-potential landscape in complex multi-stable systems, Journal of the Royal Society Interface, 9(77), 3539-3553, https://doi.org/10.1098/rsif.2012.0434.
  10. [10]  Malek, B. (2021), Quasi-potential analysis of multi-variate stochastic differential equations, https://hdl.handle.net/1721.1/142704.
  11. [11]  Lin, B., Li, Q., and Ren, W. (2022), A Data Driven Method for Computing Quasipotentials, In: Proceedings of the 2nd Mathematical and Scientific Machine Learning Conference, 652–670
  12. [12]  Benedetti, K.C.B., Gonçalves, P.B., Lenci, S., and Rega, G. (2024), Influence of uncertainties and noise on basins/attractors topology and integrity of Duffing oscillator, International Journal of Non-Linear Mechanics, 159, 104594. https://doi.org/10.1016/j.ijnonlinmec.2023.104594.
  13. [13]  Benedetti, K.C.B., Gonçalves, P.B., Lenci, S., and Lenci, S.: (2022) Helmholtz oscillator global dynamics under uncertainty and noise. In: 11th European Solid Mechanics Conference. , Galway.
  14. [14]  Lindner, M. and Hellmann, F. (2019), Stochastic basins of attraction and generalized committor functions, Physical Review E, 100(2), p.022124. https://doi.org/10.1103/PhysRevE.100.022124
  15. [15]  Benedetti, K.C.B., Gonçalves, P.B., Lenci, S., and Rega, G. (2023), An operator methodology for the global dynamic analysis of stochastic nonlinear systems, Theoretical and Applied Mechanics Letters, 13, 100419, https://doi.org/10.1016/j.taml.2022.100419.
  16. [16]  Benedetti, K.C.B. and Gonçalves, P.B. (2022), Nonlinear response of an imperfect microcantilever static and dynamically actuated considering uncertainties and noise, Nonlinear Dynamics, 107, 1725–1754. https://doi.org/10.1007/s11071-021-06600-2.
  17. [17]  Benedetti, K.C.B., Gonçalves, P.B., Lenci, S., and Rega, G. (2023), Global analysis of stochastic and parametric uncertainty in nonlinear dynamical systems: adaptative phase-space discretization strategy, with application to Helmholtz oscillator, Nonlinear Dynamics, 111, 15675–15703. https://doi.org/10.1007/s11071-023-08667-5.
  18. [18]  Hu, N. and Burgueño, R. (2015), Buckling-induced smart applications: recent advances and trends, Smart Materials and Structures, 24, 063001. https://doi.org/10.1088/0964-1726/24/6/063001.
  19. [19]  Fu, H., Nan, K., Bai, W., Huang, W., Bai, K., Lu, L., Zhou, C., Liu, Y., Liu, F., Wang, J., Han, M., Yan, Z., Luan, H., Zhang, Y., Zhang, Y., Zhao, J., Cheng, X., Li, M., Lee, J.W., Liu, Y., Fang, D., Li, X., Huang, Y., Zhang, Y., and Rogers, J.A. (2018), Morphable 3D mesostructures and microelectronic devices by multistable buckling mechanics, Nature Materials, 17, 268–276. https://doi.org/10.1038/s41563-017-0011-3.
  20. [20]  de Castro, C.H.L., Orlando, D., and Gonçalves, P.B. (2023), Static and dynamic nonlinear behavior of a multistable structural system consisting of two coupled von Mises trusses, International Journal of Non-Linear Mechanics, 156, 104510. https://doi.org/10.1016/j.ijnonlinmec.2023.104510
  21. [21]  Rega, G., and Lenci, S. (2005), Identifying, evaluating, and controlling dynamical integrity measures in non-linear mechanical oscillators, Nonlinear Analysis: Theory, Methods $\&$ Applications, 63(5-7), pp.902-914. https://doi.org/10.1016/j.na.2005.01.084.
  22. [22]  Arnold, L. (1998), Random Dynamical Systems, Springer Berlin Heidelberg, Berlin, Heidelberg.