Skip Navigation Links
Journal of Vibration Testing and System Dynamics

C. Steve Suh (editor), Pawel Olejnik (editor),

Xianguo Tuo (editor)

Pawel Olejnik (editor)

Lodz University of Technology, Poland

Email: pawel.olejnik@p.lodz.pl

C. Steve Suh (editor)

Texas A&M University, USA

Email: ssuh@tamu.edu

Xiangguo Tuo (editor)

Sichuan University of Science and Engineering, China

Email: tuoxianguo@suse.edu.cn


The Effect of Intra- and Inter-Ring Couplings in Leaky Integrate-and-Fire Multiplex Networks

Journal of Vibration Testing and System Dynamics 8(4) (2024) 405--416 | DOI:10.5890/JVTSD.2024.12.003

K. Anesiadis$^{1,2}$, J. Hizanidis$^{3,4}$

$^1$ School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Athens, GR-15772, Greece

$^2$ Institute of Nanoscience and Nanotechnology, National Center for Scientific Research ``Demokritos'', Athens, GR-15431, Greece

$^3$ Department of Physics, University of Crete, Herakleio, GR-71003, Greece

$^4$ Institute of Applied and Computational Mathematics, Foundation for Research and Technology -- Hellas, Herakleio, GR-70013, Greece

Download Full Text PDF

 

Abstract

We study the dynamics of identical Leaky Integrate-and-Fire (LIF) neurons on a multiplex composed of two ring networks with symmetric nonlocal coupling within each ring and one-to-one connections between rings. We investigate the impact of different intra-ring coupling strengths in the two rings for attractive and repulsive inter-ring coupling and show that they can lead to subthreshold oscillations. The corresponding parameter spaces where this phenomenon occurs are determined numerically. Moreover, we show that depending on whether the couplings between the two rings are attractive or repulsive, the interaction produces qualitatively different behavior in the synchronization patterns and the mean frequency profiles.

Acknowledgments

The authors would like to thank Astero Provata for helpful discussions.

References

  1. [1]  Pikovsky, A., Rosenblum, M., and Kurths, J. (2001), Synchronization -- A Universal Concept in Nonlinear Sciences, Cambridge University Press: Cambridge.
  2. [2]  Strogatz, S. (2003), Sync: The Emerging Science of Spontaneous Order, Penguin Books: London.
  3. [3]  Boccaletti, S., Pisarchik, A.N., Del Genio, C.I., and Amann, A. (2018), Synchronization: From Coupled Systems to Complex Networks, Cambridge University Press: Cambridge.
  4. [4]  Kapitaniak, T., Kuzma, P., Wojewoda, J., Czolczynski, K., and Maistrenko, Y. (2014), Imperfect chimera states for coupled pendula, Scientific Reports, 4, 6379.
  5. [5]  Nixon, M., Fridman, M., Ronen, E., Friesem, A.A., Davidson, N., and Kanter, I. (2012), Controlling synchronization in large laser networks, Physical Review Letters, 108, 214101.
  6. [6]  Shukla, N., Parihar, A., Freeman, E., Paik, H., Stone, G., Narayanan, V., Wen, H., Cai, Z., Gopalar, V., Engel-Herbert, R., Scholm, D.G., Raychowdhury, A., and Datta, S. (2014), Synchronized charge oscillations in correlated electron systems, Scientific Reports, 4, 4964.
  7. [7]  Fujino, Y. and Siringoringo, D. (2014), A conceptual review of pedestrian-induced lateral vibration and crowd synchronization problem on footbridges, Journal of Bridge Engineering, 21, C4015001.
  8. [8]  Rohden, M., Sorge, A., Timme, M., and Witthaut, D. (2012), Self-organized synchronization in decentralized power grids, Physical Review Letters, 109, 064101.
  9. [9]  Cicirelli, F., Giordano, A., and Mastroianni, C. (2021), Analysis of global and local synchronization in parallel computing, IEEE Transactions on Parallel and Distributed Systems, 32, 988-1000.
  10. [10]  Sch{\"a}fer, C., Rosenblum, M., Kurths, J., and Abel, H.-H. (1998), Heartbeat synchronized with ventilation, Nature, 392, 239-240.
  11. [11]  Axmacher, N., Mormann, F., Fern{a}ndez, G., Elger, C.E., and Fell, J. (2006), Memory formation by neuronal synchronization, Brain Research Reviews, 52, 170-182.
  12. [12]  Kuramoto, Y. and Battogtokh, D. (2002), Coexistence of coherence and incoherence in nonlocally coupled phase oscillators, Nonlinear Phenomena in Complex Systems, 5, 380-385.
  13. [13]  Abrams, D.M. and Strogatz, S.H. (2004), Chimera states for coupled oscillators, Physical Review Letters, 93, 174102.
  14. [14]  Olmi, S., Politi, A. and Torcini, A. (2010), Collective chaos in pulse-coupled neural networks, Europhysics Letters, 92, 60007.
  15. [15]  Omelchenko, I., Omel'chenko, O. E., H{\"o}vel, P., and Sch{\"o}ll, E. (2013), When nonlocal coupling between oscillators becomes stronger: patched synchrony or multichimera states, Physical Review Letters, 110, 224101.
  16. [16]  Omelchenko, I., Provata, A., Hizanidis, J., Sch{\"o}ll, E., and H{\"o}vel, P. (2015), Robustness of chimera states for coupled FitzHugh-Nagumo oscillators, Physical Review E, 91, 022917.
  17. [17]  Hizanidis, J., Kanas, V., Bezerianos, A., and Bountis, T. (2014), Chimera states in networks of nonlocally coupled Hindmarsh-Rose neuron models, International Journal of Bifurcation and Chaos, 24, 1450030.
  18. [18]  Hizanidis, J., Kouvaris, N.E., Zamora-L{o}pez, G., D{i}az-Guilera and A., and Antonopoulos, C.G. (2016), Chimera-like states in modular neural networks, Scientific Reports, 6, 19845.
  19. [19]  Wolfrum, M. and Omel'chenko, O.E. (2011), Chimera states are chaotic transients, Physical Review E, 84, 015201.
  20. [20]  Omel'chenko, O.E. (2018), The mathematics behind chimera states, Nonlinearity, 31, R121.
  21. [21]  Omel'chenko, O.E. (2022), Mathematical framework for breathing chimera states, Journal of Nonlinear Science, 32, 22.
  22. [22]  Tsigkri-DeSmedt, N.D., Hizanidis, J., Schöll, E., Hövel, P., and Provata, A. (2017), Chimeras in leaky integrate-and-fire neural networks: effects of reflecting connectivities, The European Physical Journal B, 90, 139.
  23. [23]  Laing, C.R. and Omel'chenko, O. (2020), Moving bumps in theta neuron networks, Chaos, 30, 043117.
  24. [24]  Alonso, A. and Llin{a}s, R.R. (1989), Subthreshold Na$^{+}$-dependent theta-like rhythmicity in stellate cells of entorhinal cortex layer II, Nature, 342, 175-177.
  25. [25]  Tsigkri-DeSmedt, N.D., Hizanidis, J., Hövel, P. and Provata, A. (2016), Multi-chimera states and transitions in the Leaky Integrate-and-Fire model with nonlocal and hierarchical connectivity, The European Physical Journal Special Topics, 225, 1149-1164.
  26. [26]  Luccioli S. and Politi, A. (2010), Irregular collective behavior of heterogeneous neural networks, Physical Review Letters, 105, 158104.
  27. [27]  Shena, J., Hizanidis, J., H{\"o}vel, P., and Tsironis, G.P. (2017), Multiclustered chimeras in large semiconductor laser arrays with nonlocal interactions, Physical Review E, 96, 032215.
  28. [28]  Tsigkri-DeSmedt, N.D., Sarlis, N.V., and Provata, A. (2021), Shooting solitaries due to small-world connectivity in leaky integrate-and-fire networks, Chaos, 31, 083129.
  29. [29]  Zhu, Y., Zheng, Z. and Yang, J. (2014), Chimera states on complex networks, Physical Review E, 89, 022914.
  30. [30]  Olmi, S. and Torcini, A. (2019), Chimera states in pulse coupled neural networks: the influence of dilution and noise, Nonlinear Dynamics in Computational Neuroscience, Editors F. Corinto and A. Torcini (Cham, Switzerland: PoliTo Springer Series), 65-79, Chap. 5.
  31. [31]  Ashwin, P. and Burylko, O. (2015), Weak chimeras in minimal networks of coupled phase oscillators, Chaos, 25, 013106.
  32. [32]  Rolls, E.T., Joliot, M., and Tzourio-Mazoyer, N. (2015), Implementation of a new parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas, NeuroImage, 122, 1-5.
  33. [33]  Arslan, S., Ktena, S.I., Makropoulos, A., Robinson, E.C., Rueckert, D., and Parisot, S. (2018), Human brain mapping: A systematic comparison of parcellation methods for the human cerebral cortex, NeuroImage, 170, 5-30.
  34. [34]  Albers, K.J., Ambrosen, K.S., Liptrot, M.G., Dyrby, T.B., Schmidt, M.N., and Morup, M. (2021), Using connectomics for predictive assessment of brain parcellations, NeuroImage, 238, 118170.
  35. [35]  Lapicque, L. (1907), Recherches quantitatives sur l'excitation èlectrique des nerfs traitèe comme une polarization, Journal of Physiology and Pathology Gènèrale, 9, 567-578
  36. [36]  Brunel, N. and van Rossum, M.C.W. (2007), Quantitative investigations of electrical nerve excitation treated as polarization (translation of ``Recherches quantitatives sur l’excitation èlectrique des nerfs traitèe comme une polarization''), Biological Cybernetics, 97, 341-349.
  37. [37]  Nicosia, V. and Latora, V. (2015), Measuring and modeling correlations in multiplex networks, Physical Review E, 92, 032805.
  38. [38]  Anesiadis, K. and Provata, A. (2022), Synchronization in multiplex leaky integrate-and-fire networks with nonlocal interactions, Frontiers in Network Physiology, 2, 910862.