Skip Navigation Links
Journal of Environmental Accounting and Management
António Mendes Lopes (editor), Jiazhong Zhang(editor)
António Mendes Lopes (editor)

University of Porto, Portugal

Email: aml@fe.up.pt

Jiazhong Zhang (editor)

School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China

Fax: +86 29 82668723 Email: jzzhang@mail.xjtu.edu.cn


Applications of Fractional Order Mathematical Models with an Effective Integral Transform

Journal of Environmental Accounting and Management 13(3) (2025) 311--336 | DOI:10.5890/JEAM.2025.09.006

Esra Karataş, Enis Toktas

Siirt University, Art and Science Faculty, Department of Mathematics, TR-56100 Siirt, Turkey

Download Full Text PDF

 

Abstract

References

  1. [1]  Leibnitz, G.W. (1849), Letter to G. A. L'Hospital, Leibnitzen Mathematische Schriften, 2, 301–302.
  2. [2]  Liouville, J. (1832), Sur le calcul des differentielles à indices quelconques, Journal of Ecole Polytechnique, 13, 71–162.
  3. [3]  Riemann, B. (1876), Versuch einer allgemeinen auffassung der integration and differentiation, In Gesammelte Werke; Dover: New York, NY, USA.
  4. [4]  Hilfer, R. and Luchko, Y. (2019), Desiderata for fractional derivatives and integrals, Mathematics, 7(2), 149.
  5. [5]  Samko, S.G., Kilbas, A.A., and Marichev, O.I. (1993), Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon.
  6. [6]  Hilfer, R. (Ed.). (2000), Applications of Fractional Calculus in Physics, World Scientific, Singapore.
  7. [7]  Miller, K.S. and Ross, B. (1993), An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley, New York.
  8. [8]  Oldham, K.B. and Spanier, J. (1974), The Fractional Calculus, Academic Press, New York.
  9. [9]  Varjovi, M.H., Öztemiz, F., Donuk, K., Toptaş, B., Fırat, H., Karaduman, M., and İnan, M. (2019), Üç temel kesir dereceli türev tanımına göre matlab ortamında kesir dereceli türev hesaplamaları, Anatolian Journal of Computer Sciences, 4(1), 7–28.
  10. [10]  Townsend, S. (2015), Numerical Methods in Fractional Calculus, California State Polytechnic University, Pomona, Master Thesis.
  11. [11]  Anastassiou, G.A. (2009), Caputo and Riemann—Liouville fractional approximation of Csiszar's f–divergence, Sarajevo Journal of Mathematics, 5(17), 3–12.
  12. [12]  Lazopoulos, A.K. and Karaoulanis, D. (2021), Fractional derivatives and projectile motion. Axioms, 10, 297.
  13. [13]  Al-Refai, M. and Fernandez, A. (2023), Generalising the fractional calculus with Sonine kernels via conjugations, Journal of Computational and Applied Mathematics, 427.
  14. [14]  Viera-Martin, E., Gomez-Aguilar, J.F., Solis-Perez, J.E., Hernandez-Perez, J.A., and Escobar-Jimenez, R.F. (2022), Artificial neural networks: A practical review of applications involving fractional calculus, The European Physical Journal Special Topics, 231(10), 2059–2095.
  15. [15]  Zuniga-Aguilar, C.J., Romero-Ugalde, H.M., Gomez-Aguilar, J.F., Escobar-Jimenez, R.F., and Valtierra-Rodriguez, M. (2017), Solving fractional differential equations of variable-order involving operators with Mittag-Leffler kernel using artificial neural networks, Chaos, Solitons and Fractals, 103, 382–403.
  16. [16]  Jajarmi, A., Yusuf, A., Baleanu, D., and Inc, M. (2020), A new fractional HRSV model and its optimal control: A non-singular operator approach, Physica A: Statistical Mechanics and Its Applications, 547, 1–12.
  17. [17]  Yusuf, A., Acay, B., Mustapha, U., Inc, M., and Baleanu, D. (2021), Mathematical modeling of pine wilt disease with Caputo fractional operator, Chaos, Solitons and Fractals, 143, 1–13.
  18. [18]  Ahmad, Z., Bonanomi, G., Serafino, D., and Giannino, F. (2023), Transmission dynamics and sensitivity analysis of pine wilt disease with asymptomatic carriers via fractal-fractional differential operator of Mittag-Leffler kernel, Applied Numerical Mathematics, 185, 446–465.
  19. [19]  Khan, M., Ahmad, Z., Ali, F., Khan, N., Khan, I., and Nisar, K.S. (2023), Dynamics of two-step reversible enzymatic reaction under fractional derivative with Mittag-Leffler kernel, Plos One, 18(3), e0277806.
  20. [20]  Murtaza, S., Ahmad, Z., Ali, I.E., Akhtar, Z., Tchier, F., Ahmad, H., and Yao, S.W. (2023), Analysis and numerical simulation of fractal-fractional order non-linear couple stress nanofluid with cadmium telluride nanoparticles, Journal of King Saud University - Science, 35(4).
  21. [21]  Murtaza, S., Kumam, P., Ahmad, Z., Sitthithakerngkiet, K., and Sutthibutpong, T. (2023), Fractional model of Brinkman-type nanofluid flow with fractional order Fourier's and Fick's laws, Fractals, 31(10), p.2340199.
  22. [22]  Ahmad, Z., El-Kafrawy, S.A., Alandijany, T.A., Giannino, F., Mirza, A.A., El-Daly, M.M., Faizo, A.A., Bajrai, L.H., Kamal, M.A., and Azhar, E.I. (2022), A global report on the dynamics of COVID-19 with quarantine and hospitalization: A fractional order model with non-local kernel, Computational Biology and Chemistry, 98, 107645.
  23. [23]  Rahman, M.U., Arfan, M., Deebani, W., Kumam, P., and Shah, Z. (2022), Analysis of time-fractional Kawahara equation under Mittag-Leffler power law, Fractals, 30(1), Article ID 2240021-92.
  24. [24]  Rahman, M.U., Althobaiti, A., Riaz, M.B., and Al-Duais, F.S. (2022), The numerical study on fractional order biological models with Caputo Fabrizio derivative, Fractal and Fractional, 6(8), Article ID 446.
  25. [25]  Zareen, A.K., Rahman, M.U., and Kamal, S. (2021), Study of a fractal-fractional smoking model with relapse and harmonic mean type incidence rate, Hindawi, Article ID 6344079.
  26. [26]  Ahmad, S., Sedat, P., Rahman, M.U., and Afrah, A.B. (2023), On the analysis of a fractional Tuberculosis model with the effect of an imperfect vaccine and exogenous factors under the Mittag–Leffler kernel, Fractal and Fractional, 7(7), Article ID 526.
  27. [27]  Rahman, M.U., Althobaiti, A., Riaz, M.B., and Al-Duais, F.S. (2022), A theoretical and numerical study on fractional order biological models with Caputo Fabrizio derivative, Fractal and Fractional, 6(8), Article ID 446.
  28. [28]  Rahman, M.U. (2022), Generalized fractal–fractional order problems under non-singular Mittag-Leffler kernel, Results in Physics, 35, Article ID 105346.
  29. [29]  Anderson, D.R. and Ulness, D.J. (2015), Newly defined conformable derivatives, Advances in Dynamical Systems and Applications, 10(2), 109–137.
  30. [30]  Baleanu, D., Fernandez, A., and Akgül, A. (2020), On a fractional operator combining proportional and classical differintegrals, Mathematics, 8(3), Article ID 360.
  31. [31]  Anonymous Author. (1701), Scala graduum caloris, Calorum Descriptions and Signa Philos, Scientific Journal of the Royal Society, 22(270), 824-829.
  32. [32]  Scott, J.F. (1967), The correspondence of Isaac Newton. Cambridge University Press, Volume IV, 357-365.
  33. [33]  Leinbach, C. (2011), Beyond Newton's law of cooling – estimation of time since death, International Journal of Mathematical Education in Science and Technology, 42(6), 765-774.
  34. [34]  Maruyama, S. and Moriya, S. (2021), Newton's law of cooling: follow-up and exploration, International Journal of Heat and Mass Transfer, 164, Article ID 120616.
  35. [35]  Asante, S. (2013), Application of Newton's law of cooling case study: estimation of time of death in MU (Doctoral Dissertation).
  36. [36]  Farman, M., Akgül, A., Garg, H., Baleanu, D., Hincal, E., and Shahzeen, S. (2023), Mathematical analysis and dynamical transmission of monkeypox virus model with fractional operator, Expert Systems, Article ID e13475.
  37. [37]  Farman, M., Akgül, A., Alshaikh, N., Azeem, M., and Asad, J. (2023), Fractional-order Newton-Raphson method for nonlinear equation with convergence and stability analyses, Fractals-Complex Geometry Patterns and Scaling in Nature and Society, 31(10), Article ID 2340079.
  38. [38]  Ali, R. and Akgül, A. (2024), A new matrix splitting generalized iteration method for linear complementarity problems, Applied Mathematics and Computation, 464, Article ID 128378.
  39. [39]  Jamil, S., Farman, M., Akgül, A., Saleem, M.U., Hincal, E., and El Din, S.M. (2023), Fractional order age-dependent COVID-19 model: An equilibria and quantitative analysis with modeling, Results in Physics, 53, Article ID 106928.
  40. [40]  Farman, M., Shehzad, A., Akgül, A., Baleanu, D., Attia, N., and Hassan, A.M. (2023), Analysis of a fractional order Bovine Brucellosis disease model with discrete generalized Mittag-Leffler kernels, Results in Physics, 52, Article ID 106887.
  41. [41]  Akram, G., Sadaf, M., Zainab, I., Abbas, M., and Akgül, A. (2023), A comparative study of time fractional nonlinear Drinfeld-Sokolov-Wilson system via modified auxiliary equation method, Fractal and Fractional, 7(9), Article ID 665.
  42. [42]  Jamil, S., Farman, M., and Akgül, A. (2023), Qualitative and quantitative analysis of a fractal fractional HIV/AIDS model, Alexandria Engineering Journal, 76, 167-177.
  43. [43]  Tang, T.-Q., Shah, Z., Jan, R., Deebani, W., and Shutaywi, M. (2021), A robust study to conceptualize the interactions of CD4+ T-cells and human immunodeficiency virus via fractional-calculus, Physica Scripta, 96, 125231.
  44. [44]  Jan, A., Boulaaras, S., Abdullah, F.A., and Jan, R. (2023), Dynamical analysis, infections in plants and preventive policies utilizing the theory of fractional calculus, European Physical Journal Special Topics, 232, 2497–2512.
  45. [45]  Alharbi, R., Jan, R., Alyobi, S., Altayeb, Y., and Khan, Z. (2022), Mathematical modeling and stability analysis of the dynamics of monkeypox via fractional-calculus, Fractals, 30(10), 2240266.
  46. [46]  Jan, R., Boulaaras, S., Alyobi, S., and Jawad, M. (2023), Transmission dynamics of Hand-Foot-Mouth Disease with partial immunity through non-integer derivative, International Journal of Biomathematics, 16(6), p.2250115.
  47. [47]  Jan, R., Razak, N.N.A., Boulaaras, S., Rehman, Z.U., and Bahramand, S. (2023), Mathematical analysis of the transmission dynamics of viral infection with effective control policies via fractional derivative, Nonlinear Engineering, 12, 20220342.
  48. [48]  Jan, R., Hinçal, E., Hosseini, K., Razak, N.N.A., Abdeljawad, T., and Osman, M.S. (2024), Fractional view analysis of the impact of vaccination on the dynamics of a viral infection, Alexandria Engineering Journal, 102, 36–48.
  49. [49]  Baleanu, D., Jajarmi, A., Sajjadi, S.S., and Mozyrska, D. (2019), A new fractional model and optimal control of a tumor-immune surveillance with non-singular derivative operator, Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(8), 083127.
  50. [50]  Defterli, O., Baleanu, D., Jajarmi, A., Sajjadi, S.S., Alshaikh, N., and Asad, J.H. (2022), Fractional treatment: An accelerated mass-spring system, Romanian Reports in Physics, 74(4), 122.
  51. [51]  Baleanu, D., Shekari, P., Torkzadeh, L., Ranjbar, H., Jajarmi, A., and Nouri, K. (2023), Stability analysis and system properties of Nipah virus transmission: A fractional calculus case study, Chaos, Solitons \& Fractals, 166, 112990.
  52. [52]  Bas, E. and Ozarslan, R. (2018), Real world applications of fractional models by Atangana–Baleanu fractional derivative, Chaos, Solitons and Fractals, 116, 121-125.
  53. [53]  Ludwin, C. (2011), Blood alcohol content, Undergraduate Journal of Mathematics, 3(2), 1.
  54. [54]  Singh, J. (2020), Analysis of fractional blood alcohol model with composite fractional derivative, Chaos, Solitons and Fractals, 140, 110127.
  55. [55]  Alomari, A.K., Abdeljawad, T., Baleanu, D., Saad, K.M., and Al-Mdallal, Q.M. (2020), Numerical solutions of fractional parabolic equations with generalized Mittag-Leffler kernels, Numerical Methods for Partial Differential Equations, 1–13.
  56. [56]  Karatas Akgül, E., Jamshed, W., Nisar, K.S., Elagan, S.K., and Alshehri, N.A. (2021), On solutions of gross domestic product model with different kernels, Alexandria Engineering Journal, 61(2), 1289-1295.
  57. [57]  Abdeljawad, T. (2020), Lyapunov-type inequalities for local fractional proportional derivatives, Fractional Order Analysis, Theory, Methods and Applications, 133-150.
  58. [58]  Atangana, A. and Akgül, A. (2020), Can transfer function and Bode diagram be obtained from Sumudu transform? Alexandria Engineering Journal, 59(4), 1971-1984.
  59. [59]  Acay, B., Bas, E., and Abdeljawad, T. (2019), Fractional economic models based on market equilibrium in the frame of different type kernels, Chaos, Solitons and Fractals, 130, p.109438.