Skip Navigation Links
Journal of Environmental Accounting and Management
António Mendes Lopes (editor), Jiazhong Zhang(editor)
António Mendes Lopes (editor)

University of Porto, Portugal

Email: aml@fe.up.pt

Jiazhong Zhang (editor)

School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China

Fax: +86 29 82668723 Email: jzzhang@mail.xjtu.edu.cn


Design and Implementation of a Digital Controller Method Based on Complex EOG Signal Processing for External Devices Input Control

Journal of Environmental Accounting and Management 13(3) (2025) 219--237 | DOI:10.5890/JEAM.2025.09.001

Jos\'{e} A. Guerrero-D\'{\i}az-de-Le\'{o}n$^1$, Siegfried Mac\'{\i}as$^{2,3}$, Jorge E. Mac\'{\i}as-D\'{\i}az$^{3,4}$, Victoria Mart\'inez-Medina$^5$

$^1$ Departamento de Estad'{i}stica, Universidad Aut'{o}noma de Aguascalientes, Avenida Universidad 940, Ciudad Universitaria, Aguascalientes 20100, Mexico

$^2$ Centro Universitario de los Lagos, Universidad de Guadalajara, Av. Enrique D'{i}az de Le'{o}n No. 1144, Colonia Paseos de a, Lagos de Moreno, Jalisco 47460, Mexico

$^3$ Departamento de Matem'{a}ticas y F'{i}sica, Universidad Aut'{o}noma de Aguascalientes, Avenida Universidad 940, Ciudad Universitaria, Aguascalientes 20100, Mexico

$^4$ Department of Mathematics and Didactics of Mathematics, Tallinn University. Narva mnt 25, Tallinn, 10120, Estonia

$^5$ Centro de Ciencias B'{a}sicas, Universidad Aut'{o}noma de Aguascalientes, Avenida Universidad 940, Ciudad Universitaria, Aguascalientes, Ags. 20100, Mexico

Download Full Text PDF

 

Abstract

References

  1. [1]  Talbot, K. (2009), Motor neuron disease: the bare essentials, Practical Neurology, 9(5), 303-309.
  2. [2]  Tiryaki, E. and Horak, H.A. (2014), ALS and other motor neuron diseases, CONTINUUM: Lifelong Learning in Neurology, 20(5), 1185-1207.
  3. [3]  Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet. 8 Nov 2018: 392.
  4. [4]  Barea, R., Boquete, L., Mazo, M., and Lopez, E. (2002), System for assisted mobility using eye movements based on electrooculography, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 10(4), 209–218.
  5. [5]  Chen, K.B., Savage, A.B., Chourasia, A.O., Wiegmann, D.A., and Sesto, M.E. (2013), Touch screen performance by individuals with and without motor control disabilities, Applied Ergonomics, 44(2), 297-302.
  6. [6]  Cofre, J.P., Moraga, G., Rusu, C., Mercado, I., Inostroza, R., and Jimenez, C. (2012), Developing a touchscreen-based domotic tool for users with motor disabilities, In 2012 Ninth International Conference on Information Technology-New Generations, 696-701.
  7. [7]  Shih, C.H. and Shih, C.T. (2010), Assisting two children with multiple disabilities and minimal motor skills control environmental stimuli with thumb poke through a trackball, Behavioural and Cognitive Psychotherapy, 38(2), 211-219.
  8. [8]  Wobbrock, J. and Myers, B. (2006), Trackball text entry for people with motor impairments, In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 479-488.
  9. [9]  Donne, V. (2012), Keyboard instruction for students with a disability, The Clearing House: A Journal of Educational Strategies, Issues and Ideas, 85(5), 201-206.
  10. [10]  Yanco, H.A. (2006), Wheelesley: A robotic wheelchair system: Indoor navigation and user interface, Assistive Technology and Artificial Intelligence: Applications in Robotics, User Interfaces and Natural Language Processing, 256-268.
  11. [11]  Guerrero, J.A. and Mac{\i}as-D{\i}az, J.E. (2020), A threshold selection criterion based on the number of runs for the detection of bursts in EMG signals, Biomedical Signal Processing and Control, 57, 101699.
  12. [12]  Guerrero, J.A. and Mac{\i}as-D{\i}az, J.E. (2019), A package for the computational analysis of complex biophysical signals, International Journal of Modern Physics C, 30(01), 1950005.
  13. [13]  Guerrero, J.A. and Mac{\i}as-D{\i}az, J.E. (2019), An optimal bayesian threshold method for onset detection in electric biosignals, Mathematical Biosciences, 309, 12-22.
  14. [14]  Fatourechi, M., Bashashati, A., Ward, R.K., and Birch, G.E. (2007), EMG and EOG artifacts in brain computer interface systems: A survey, Clinical Neurophysiology, 118(3), 480-494.
  15. [15]  Croft, R.J. and Barry, R.J. (1998), EOG correction: a new perspective, Electroencephalography and Clinical Neurophysiology, 107(6), 387-394.
  16. [16]  Elbert, T., Lutzenberger, W., Rockstroh, B., and Birbaumer, N. (1985), Removal of ocular artifacts from the EEG---a biophysical approach to the EOG, Electroencephalography and Clinical Neurophysiology, 60(5), 455-463.
  17. [17]  Croft, R.J., Chandler, J.S., Barry, R.J., Cooper, N.R., and Clarke, A.R. (2005), EOG correction: a comparison of four methods, Psychophysiology, 42(1), 16-24.
  18. [18]  Lopez, A., Ferrero, F.J., Valledor, M., Campo, J.C., and Postolache, O. (2016), A study on electrode placement in EOG systems for medical applications, In 2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA), 1-5.
  19. [19]  H\"{a}kkinen, V., Hirvonen, K., Hasan, J., Kataja, M., V\"{a}rri, A., Loula, P., and Eskola, H. (1993), The effect of small differences in electrode position on EOG signals: application to vigilance studies, Electroencephalography and Clinical Neurophysiology, 86(4), 294-300.
  20. [20]  Heo, J., Yoon, H., and Park, K. (2017), A novel wearable forehead EOG measurement system for human computer interfaces, Sensors, 17(7), 1485.
  21. [21]  Gobena, D.L. (2019), Human-Computer/Device Interaction. Computer Architecture in Industrial, Biomechanical and Biomedical Engineering, 29.
  22. [22]  Shrawankar, U. and Thakare, V. (2010), Speech user interface for computer based education system, In 2010 International Conference on Signal and Image Processing, 148-152.
  23. [23]  Anderson, A.J. (2020), Foundations of Computer Technology, CRC Press.
  24. [24]  Chou, R.K. (2009), Electro-oculogram control system (TW201028895A). TW Patent Office. https://worldwide.espacenet.com.
  25. [25]  Univ Anhui and Anhui University. (2009), Human-computer interaction system based on electro-ocular signal (CN101598973A). China Patent Office. https://worldwide.espacenet.com.
  26. [26]  Electrooculogram control system and method for controlling cursor by using eye electricity control system (CN101995944A). China Patent Office. https://worldwide.espacenet.com.
  27. [27]  Baiokontoroole SYST INC. (1990), Visual Controller (JPH0695797A). Japan Patent Office. https://worldwide.espacenet.com.
  28. [28]  Univ South China Tech. (2017), EOG-based quick method for character input (CN107329582A). China Patent Office. https://worldwide.espacenet.com .
  29. [29]  Huanan Naokong Guangdong Intelligent Tech Co Itd. (2019), Eye control device and eye control method based on EOG and attitude sensor (CN110134245A). China Patent https://worldwide.espacenet.com
  30. [30]  Univ Electronic Science \& Tech. (2011), Electro-oculogram signal-based computer input control (CN102129307A). China Patent Office. https://worldwide.espacenet.com.
  31. [31]  Babu, Cedric. (2002), Method and apparatus for generating control signals using electro-oculographic potentials (WO2004021157A1). World Intellectual Property Organization. https://worldwide.espacenet.com.
  32. [32]  Res Foundation State University. (1993), Apparatus and method for eye tracking interface (US5360971A). U. S. Patent Office. https://worldwide.espacenet.com
  33. [33]  Fakesch, U., Peter, W., and Oliver, N. (2001), Device and method for determining the viewing direction in terms of a fix reference co-ordinates system (US2004070729A1). U.S. Patent Office. https://worldwide.espacenet.com.
  34. [34]  Univ Xi An Jiaotong. (2012), Wearable portable device and method for analyzing eye movement (CN103054549A). China Patent Office. https://worldwide.espacenet.com.
  35. [35]  KDDI Corp. (2018), Input control device, input control method, and program (JP2019135601A). Japan Patent Office. https://worldwide.espacenet.com.
  36. [36]  Jins Inc. (2014), Program, information processing device, and eyewear (JP2018010329A). Japan Patent Office. https://worldwide.espacenet.com.
  37. [37]  Univ Electronic Science \& Tech. (2011), Electro-oculogram signal-based computer input control method (CN102129307A). China Patent Office. https://worldwide.espacenet.com.