Journal of Applied Nonlinear Dynamics
A Note on a Camassa-Holm Type Equation
Journal of Applied Nonlinear Dynamics 14(2) (2025) 299--311 | DOI:10.5890/JAND.2025.06.006
Giuseppe Maria Coclite, Lorenzo di Ruvo
Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, via E. Orabona 4, 70125 Bari, Italy
Dipartimento di Matematica, Universit`a di Bari, via E. Orabona 4, 70125 Bari, Italy
Download Full Text PDF
Abstract
Camassa-Holm equation arises as model for unidirectional propagation of shallow water waves
over a flat bottom. In this paper, we prove the well-posedness of the classical solution for the Cauchy problem associated with this equation, for every choice of the time $T$.
References
-
[1]  |
Fokas, A.S. and Liu, Q.M. (1996), Asymptotic integrability of water waves,
Physical Review Letters, 77(12), 2347-2351.
|
-
[2]  |
Fuchssteiner, B. and Fokas, A.S. (1981), Symplectic structures, their
B{\"a}cklund transformations and hereditary symmetries, Physica D,
4, 47-66.
|
-
[3]  |
Fokas, A.S. (1995), On a class of physically important integrable equations,
Physica D, 87, 145-150.
|
-
[4]  |
Fokas, A.S., Olver, P.J., and Rosenau, P. (1997), A plethora of integrable
bi-Hamiltonian equations, Algebraic aspects of integrable systems: in
memory of Irene Dorfman, 93-101, Boston, MA: Birkh{\"a}user.
|
-
[5]  |
Fuchssteiner, B. (1996), Some tricks from the symmetry-toolbox for nonlinear
equations: Generalizations of the Camassa-Holm equation, Physica
D, 95, 229-243.
|
-
[6]  |
Camassa, R. and Holm, D.D. (1993), An integrable shallow water equation with
peaked solitons, Physical Review Letters, 71, 1661-1664.
|
-
[7]  |
Constantin, A. and Lannes, D. (2009), The hydrodynamical relevance of the
Camassa-Holm and Degasperis-Procesi equations, Archive for Rational Mechanics and Analysis, 192, 165-186.
|
-
[8]  |
Ionescu-Kruse, D. (2007), Variational derivation of the Camassa-Holm shallow
water equation, Journal of Nonlinear Mathematical Physics, 14(3), 311-320.
|
-
[9]  |
Johnson, R.S. (2002), Camassa-Holm, Korteweg-de Vries and related models
for water waves, Journal of Fluid Mechanics, 455, 63-82.
|
-
[10]  |
Dai, H.H. (1998), Exact travelling-wave solutions of an integrable equation
arising in hyperelastic rods. Wave Motion, 28, 367-381.
|
-
[11]  |
Dai, H.H. (1998), Model equations for nonlinear dispersive waves in a
compressible Mooney-Rivlin rod, Acta Mechanica, 127, 193-207.
|
-
[12]  |
Dai, H.H. and Huo, Y. (2000), Solitary shock waves and other travelling waves
in a general compressible hyperelastic rod, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 456, 331-363.
|
-
[13]  |
Misio{\l}ek, G. (1998), A shallow water equation as a geodesic flow on the
Bott-Virasoro group, Journal of Geometry and Physics, 24(3), 203-208.
|
-
[14]  |
Arnol'd, V.I. (1966), Sur la g{e}om{e}trie diff{e}rentielle des groupes
de Lie de dimension infinite et ses applications {\`a} l'hydrodynamique des
fluides parfaits, In Annales de l'institut Fourier, 16(1), 319-361.
|
-
[15]  |
Constantin, A. and Kolev, B. (2002), On the geometric approach to the motion of
inertial mechanical systems, Journal of Physics A: Mathematical and General, 35,
51-79.
|
-
[16]  |
Constantin, A. and Kolev, B. (2003), Geodesic flow on the diffeomorphism group
of the circle, Commentarii Mathematici Helvetici, 78, 787-804.
|
-
[17]  |
Constantin, A. and Escher, J. (1998), Global existence and blow-up for a shallow
water equation, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 26(2), 303-328.
|
-
[18]  |
Himonas, A.A. and Misio{\l}ek, G. (2001), The Cauchy problem for an
integrable shallow-water equation, Differential and Integral Equations, 14,
821-831.
|
-
[19]  |
Li, Y.A. and Olver, P.J. (2000), Well-posedness and blow-up solutions for an
integrable nonlinearly dispersive model wave equation, Journal of Differential Equations, 162(1), 27-63.
|
-
[20]  |
Rodr{{\i}}guez-Blanco, G. (2001), On the Cauchy problem for the
Camassa-Holm equation, Nonlinear Analysis: Theory, Methods $\&$ Applications, 46(3), 309-327.
|
-
[21]  |
Constantin, A. (2000), Existence of permanent and breaking waves for a shallow
water equation: a geometric approach, Annales de l'institut Fourier, 50(2),
321-362.
|
-
[22]  |
Constantin, A. and Molinet, L. (2000), Global weak solutions for a shallow water
equation, Communications in Mathematical Physics, 211, 45-61.
|
-
[23]  |
Bressan, A. and Constantin, A. (2007), Global conservative solutions of the
Camassa-Holm equation, Rational Mechanics and Analysis, 183,
215-239.
|
-
[24]  |
Bressan, A. and Constantin, A. (2007), Global dissipative solutions of the
Camassa-Holm equation, Analysis and Applications, 5, 1-27.
|
-
[25]  |
Coclite, G.M., Holden, H., and Karlsen, K.H. (2005), Global weak solutions to
a generalized hyperelastic-rod wave equation, SIAM Journal on Mathematical Analysis,
37(4), 1044-1069.
|
-
[26]  |
Coclite, G.M., Holden, H., and Karlsen, K.H. (2009), Well-posedness of
higher-order Camassa-Holm equations, Journal of Differential Equations, 246(3), 929-963.
|
-
[27]  |
Coclite, G.M. and Karlsen, K.H. (2015), A note on the Camassa-Holm
equation, Journal of Differential Equations, 259, 2158-2166.
|
-
[28]  |
Constantin, A. and Molinet, L. (2000), Global weak solutions for a shallow water
equation, Communications in Mathematical Physics, 211, 45-61.
|
-
[29]  |
Holden, H. and Raynaud, X. (2007), Global conservative solutions of the
generalized hyperelastic-rod wave equation, Journal of Differential Equations,
233(2), 448-484.
|
-
[30]  |
Holden, H. and Raynaud, X. (2007), Global conservative solutions of the
Camassa-Holm equation - a Lagrangian point of view, Communications in Partial Differential Equations, 32(10), 1511-1549.
|
-
[31]  |
Holden, H. and Raynaud, X. (2009), Dissipative solutions for the
Camassa-Holm equation, Discrete and Continuous Dynamical Systems, 24(4),
1047-1112.
|
-
[32]  |
Johnson, R.S. (2003), On solutions of the camassa-holm equation,
Proceedings of the Royal Society of London. Series A: Mathematical, Physical
and Engineering Sciences, 459, 1687-1708.
|
-
[33]  |
Xin, Z. and Zhang, P. (2000), On the weak solutions to a shallow water equation,
Communications on Pure and Applied Mathematics, 53(11), 1411-1433.
|
-
[34]  |
Xin, Z. and Zhang, P. (2002), On the uniqueness and large time behavior of the
weak solutions to a shallow water equation, Communications in Partial Differential Equations, 27, 1815-1844.
|
-
[35]  |
Coclite, G.M., Karlsen, K.H., and Risebro, N.H. (2008), A convergent finite
difference scheme for the Camassa-Holm equation with general $H^1$,
initial data, Journal on Numerical Analysis, 46, 1554-1579.
|
-
[36]  |
Coclite, G.M., Karlsen, K.H., and Risebro, N.H. (2008), An explicit finite
difference scheme for the Camassa-Holm equation, Advances in Difference Equations, 13, 681-732.
|
-
[37]  |
Lenells, J. (2005), Traveling wave solutions of the Camassa-Holm equation,
Journal of Differential Equations, 217(2), 393-430.
|
-
[38]  |
Constantin, A. (1997), On the Cauchy problem for the periodic Camassa-Holm
equation, Journal of Differential Equations, 141, 218-235.
|
-
[39]  |
Misiolek, G. (2002), Classical solutions of the periodic
camassa-holm equation, Geometric and Functional Analysis,
12, 1080-1104.
|
-
[40]  |
Coclite, G.M. and di Ruvo, L. (2016), A note on the convergence of the
solutions of the Camassa-Holm equation to the entropy ones of a scalar
conservation law, Discrete and Continuous Dynamical Systems, 36(6), 2981-2990.
|
-
[41]  |
Coclite, G.M. and di Ruvo, L. (2017), A note on the convergence of the solution
of the high order Camassa-Holm equation to the entropy ones of a scalar
conservation law, Discrete and Continuous Dynamical Systems, 37, 1247-1282.
|
-
[42]  |
Coclite, G.M. and di Ruvo, L. (2019), A note on the convergence of the solution
of the Novikov equation, Discrete $\&$ Continuous Dynamical Systems-Series B,
24, 2865-2899.
|
-
[43]  |
Coclite, G.M. and Karlsen, K.H. (2006), A singular limit problem for
conservation laws related to the Camassa-Holm shallow water equation,
Communications in Partial Differential Equations, 31(8), 1253-1272.
|
-
[44]  |
Coclite, G.M. and diRuvo, L. (2014), Convergence of the Ostrovsky equation
to the Ostrovsky-Hunter one, Journal of Differential Equations, 256,
3245-3277.
|
-
[45]  |
Coclite, G.M. and di Ruvo, L. (2015), Dispersive and diffusive limits for
Ostrovsky-Hunter type equations, NoDEA, Nonlinear Differential Equations and Applications, 22, 1733-1763.
|
-
[46]  |
LeFloch, P.G. and Natalini, R. (1999), Conservation laws with vanishing
nonlinear diffusion and dispersion, Nonlinear Analysis: Theory, Methods $\&$ Applications, 36(2), 213-230.
|
-
[47]  |
Schonbek, M.E. (1982), Convergence of solutions to nonlinear dispersive
equations, Communications in Partial Differential Equations, 7(8), 959-1000.
|
-
[48]  |
Hwang, S. (2007), Singular limit problem of the Camassa-Holm type equation,
Journal of Differential Equations, 235(1), 74-84.
|
-
[49]  |
Hwang, S. and Tzavaras, A.E. (2002), Kinetic decomposition of approximate
solutions to conservation laws: Application to relaxation and
diffusion-dispersion approximations, Communications in Partial Differential Equations, 27, 1229-1254.
|
-
[50]  |
Coclite, G.M. and di Ruvo, L. (2023), On ${H}^2$-solutions for a camassa-holm
type equation, Open Mathematics, 21, 1-21.
|
-
[51]  |
Coclite, G.M., Holden, H., and Karlsen, K.H. (2005), Wellposedness for a
parabolic-elliptic system, Discrete and Continuous Dynamical Systems, 13(3),
659-682.
|