Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain

Email: miguel.sanjuan@urjc.es

Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email: aluo@siue.edu


Age-Structured Heroin Transmission Model with Delay

Journal of Applied Nonlinear Dynamics 14(2) (2025) 271--284 | DOI:10.5890/JAND.2025.06.004

Imane Hana Zirar$^{1}$, Abdelkader Lakmeche$^{1}$, Nacera Helal$^{1,2}$, Salih Djilali$^3$, Anwar Zeb$^4$

$^1$ Biomathematics Laboratory, Djillali Liabes University of Sidi Bel-Abbes, 22000 Algeria

$^2$ Ecole sup'{e}rieure en informatique 08 Mai 1945 Sidi Bel-Abb`{e}s, Algeria

$^3$ Department of Mathematics, Faculty of Exact Sciences and informatics, Hassiba Benbouali University, Chlef 02000, Algeria

$^4$ Department of Mathematics, COMSATS University Islamabad, Abbottabad, 22060, Pakistan

Download Full Text PDF

 

Abstract

This study investigates the outbreak of heroin addiction using a new model for heroin transmission with delay and a finite treatment period. The investigated model considers two different repulsion mechanisms, namely, repulsion from treatment to heroin addiction during treatment, and repulsion from treatment to potentially addicted individuals after treatment. These two repulsions make investigating the suggested age-structured model challenging. Indeed, we establish that the drug-free (resp. drug spread) equilibrium is locally asymptotically stable if the incidence rate $\beta$ is less than a certain threshold value $\beta^*$, with additional assumptions on the parameters of the model. Moreover, we have demonstrated the global asymptotic stability of the drug-free equilibrium when $\beta$ is less than another threshold value $\beta^{}$ (where $\beta^{**} < \beta^*$). Some numerical investigations of the model are conducted to identify effective measures for containing the epidemic.

References

  1. [1] Platt, J.J. and Labate, C. (1976), Heroin addiction: Theory, research and treatment.
  2. [2] Hosztafi, S. (2011), Heroin addiction, Acta Pharmaceutica Hungarica, 81(4), 173-183.
  3. [3] Dole, V.P. and Nyswander, M.E. (1967), Heroin addiction-a metabolic disease, Archives of Internal Medicine, 120(1), 19-24.
  4. [4]  Lai, S., Liu, W., Chen, J., Yang, J., Li, Z.J., Li, R.J., Liang, F.X., Liang, S.L., Zhu, Q.Y., and Yu, X.F. (2001), Changes in HIV-1 incidence in heroin users in Guangxi Province, China, JAIDS Journal of Acquired Immune Deficiency Syndromes, 26(4), 365-370.
  5. [5]  Garten, R.J., Lai, S., Zhang, J., Liu, W., Chen, J., Vlahov, D., and Yu, X.F. (2004), Rapid transmission of hepatitis C virus among young injecting heroin users in southern China, International Journal of Epidemiology, 33(1), 182-188.
  6. [6] Hickman, M., Seaman, S., and De Angelis, D. (2001), Estimating the relative incidence of heroin use: application of a method for adjusting observed reports of first visits to specialized drug treatment agencies, American Journal of Epidemiology, 153(7), 632-641.
  7. [7] Warner‐Smith, M., Darke, S., Lynskey, M., and Hall, W. (2001), Heroin overdose: causes and consequences, Addiction, 96(8), 1113-1125.
  8. [8] Petry, N.M., Bickel, W.K., and Arnett, M. (1998), Shortened time horizons and insensitivity to future consequences in heroin addicts, Addiction, 93(5), 729-738.
  9. [9]  White, E. and Comiskey, C. (2007), Heroin epidemics, treatment and ODE modelling, Mathematical Biosciences, 208(1), 312-324.
  10. [10]  Fang, B., Li, X.Z., Martcheva, M., and Cai, L.M. (2015), Global asymptotic properties of a heroin epidemic model with treat-age, Applied Mathematics and Computation, 263, 315-331.
  11. [11]  Djilali, S., Touaoula, T.M., and Miri, S.E.H. (2017), A heroin epidemic model: very general non linear incidence, treat-age, and global stability, Acta Applicandae Mathematicae, 152, 171-194.
  12. [12] Djilali, S., Bentout, S., Touaoula, T.M., and Atangana, A. (2023), Threshold dynamics for an age‐structured heroin epidemic model with distributed delays, Mathematical Methods in the Applied Sciences, 46(13), 13595-13619.
  13. [13]  Djilali, S., Zeb, A., and Saeed, T. (2022), Effect of Occasional heroin consumers on the spread of heroin addiction, Fractals, 30(05), 2240164.
  14. [14]  Beyrera, C., Razaka, M.H., Lisamb, K., et al. (2000), Trafficking routes and HIV-1 spread in south and southwest Asia, Journal of AIDS, 14, 75-83.
  15. [15] Fang, B., Li, X., Martcheva, M., and Cai, L. (2014), Global stability for a heroin model with two distributed delays, Discrete $\&$ Continuous Dynamical Systems-Series B, 19(3),
  16. [16]  Huang, G. and Liu, A. (2013), A note on global stability for a heroin epidemic model with distributed delay, Applied Mathematics Letters, 26(7), 687-691.
  17. [17]  Law, M.G., Lynskey, M., Ross, J., and Hall, W. (2001), Back‐projection estimates of the number of dependent heroin users in Australia, Addiction, 96(3), 433-443.
  18. [18]  Liu, J. and Zhang, T. (2011), Global behaviour of a heroin epidemic model with distributed delays, Applied Mathematics Letters, 24(10), 1685-1692.
  19. [19]  Liu, S., Zhang, L., Zhang, X.B., and Li, A. (2019), Dynamics of a stochastic heroin epidemic model with bilinear incidence and varying population size, International Journal of Biomathematics, 12(01), 1950005.
  20. [20]  Liu, X. and Wang, J. (2016), Epidemic dynamics on a delayed multi-group heroin epidemic model with nonlinear incidence rate, Journal of Nonlinear Sciences and Applications, 9(5), 2149-2160.
  21. [21]  Mulone, G. and Straughan, B. (2009), A note on heroin epidemics, Mathematical Biosciences, 218(2), 138-141.
  22. [22]  Nordt, C. and Stohler, R. (2008), Estimating heroin epidemics with data of patients in methadone maintenance treatment, collected during a single treatment day, Addiction, 103(4), 591-597.
  23. [23]  Nordt, C. and Stohler, R. (2006), Incidence of heroin use in Zurich, Switzerland: a treatment case register analysis, The Lancet, 367(9525), 1830-1834.
  24. [24]  C. Nordt and R. Stohler, Versorgung der Heroin abhngigen im Kanton Zrich, 1991 bis 2004 [Treatment Provision for Heroin Users in the Canton of Zurich, 1991-2004]. 2006. Zurich: Forschungsgruppe Substanzstrungen der Psychiatrischen Universit tsklinik. Available at: http://www.puk-west. unizh.ch/de/pdf/MethiInfo13.pdf (accessed 13 September 2007),
  25. [25]  Rashid, S., Jarad, F., Ahmad, A.G., and Abualnaja, K.M. (2022), New numerical dynamics of the heroin epidemic model using a fractional derivative with Mittag-Leffler kernel and consequences for control mechanisms, Results in Physics, 35, 105304.
  26. [26] Samanta, G.P. (2011), Dynamic behaviour for a nonautonomous heroin epidemic model with time delay, Journal of Applied Mathematics and Computing, 35, 161-178.
  27. [27] Wang, X., Yang, J., and Li, X. (2011), Dynamics of a heroin epidemic model with very population, Applied Mathematics, 2(6), 732.
  28. [28]  Wei, Y., Yang, Q., and Li, G. (2019), Dynamics of the stochastically perturbed Heroin epidemic model under non-degenerate noises, Physica A: Statistical Mechanics and Its Applications, 526, 120914.
  29. [29]  Yang, J., Li, X., and Zhang, F. (2016), Global dynamics of a heroin epidemic model with age structure and nonlinear incidence, International Journal of Biomathematics, 9(03), 1650033.
  30. [30]  Yang, J., Wang, L., Li, X., and Zhang, F. (2016), Global dynamical analysis of a heroin epidemic model on complex networks, Journal of Applied Analysis $\&$ Computation, 6(2), 429-442.
  31. [31]  Zhang, T., Zheng, X., Kim, K., Zheng, F., and Zhan, C.G. (2018), Blocking drug activation as a therapeutic strategy to attenuate acute toxicity and physiological effects of heroin, Scientific Reports, 8(1), 16762.
  32. [32] Bottcher, L., Chou, T., and D'Orsogna, M.R. (2023), Modeling and forecasting age-specific drug overdose mortality in the United States, The European Physical Journal Special Topics, 232(11), 1743-1752.
  33. [33] Xu, J. (2023), Dynamical analysis of a heroin–cocaine epidemic model with nonlinear incidence and spatial heterogeneity, Journal of Biological Dynamics, 17(1), 2189026.
  34. [34] Jiang, H., Chen, L., Wei, F., and Zhu, Q. (2023), Survival analysis and probability density function of switching heroin model, Mathematical Biosciences and Engineering, 20(7), 13222-13249.
  35. [35] Numfor, E., Tuncer, N., and Martcheva, M. (2024), Optimal control of a multi-scale HIV-opioid model, Journal of Biological Dynamics, 18(1), 2317245.
  36. [36] Butler, C. and Stechlinski, P. (2023), Modeling opioid abuse: A case study of the opioid crisis in new England, Bulletin of Mathematical Biology, 85(6), 45.
  37. [37] Iannelli, M. (1995), Mathematical theory of age-structured population dynamics, Giardini editori e stampatori in Pisa.