Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)
Miguel A. F. Sanjuan (editor)

Department of Physics, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain

Email: miguel.sanjuan@urjc.es

Albert C.J. Luo (editor)

Department of Mechanical and Industrial Engineering, Southern Illinois University Ed-wardsville, IL 62026-1805, USA

Fax: +1 618 650 2555 Email: aluo@siue.edu


Effective Control Scheme of PWM Universal Motor with Coulomb Friction based on Particle Swarm Optimization

Journal of Applied Nonlinear Dynamics 13(1) (2024) 155--175 | DOI:10.5890/JAND.2024.03.011

A. Soup Tewa Kammogne$^1$, M. Njamen Tchaptchet$^{1}$, M. Siewe Siewe$^{2}$, P. Louodop$^{1}$, G. Kenne$^{3}$

$^{1}$ Laboratory of Condensed Matter, Electronics and Signal Processing (LAMACETS), Department of Physic, Faculty of Sciences, University of Dschang, P.O. Box 67, Dschang, Cameroon

$^{2}$ Laboratory of Mechanics, Materials and Structures. Faculty of Science, Department of Physics, University of Yaounde 1, P.O. Box 812 Yaounde, Cameroon

$^3$ Unité de Recherche d’Automatique et d’Informatique Appliquée (UR-AIA), Département de Génie Électrique, IUT FOTSO Victor Bandjoun, Université de Dschang, B.P. 134, Bandjoun, Cameroun

Download Full Text PDF

 

Abstract

Power electronic converters have undesirable characteristics that can be influenced by the structure of the converter, the load, the parameters as well as the pulse period, which leads to the malfunction of the converters. For precise positioning tasks, the friction phenomenon plays an important role. In this paper, we first propose to study the dynamics of the general period-1 behavior in a PWM-controlled universal DC motor drive system with nonlinear Coulomb friction and subsequently control the system towards period 1 by optimizing the controller parameters via the particle swarm algorithm (PSO). The dynamic analysis is performed using bifurcation tools, and phase portraits showing that the system exhibits very rich and striking behavior such as periodic orbits, period-doubling bifurcation, quasi-periodicity and chaos control in live mode. In addition, the Filippov method is used to calculate the eigenvalues of the monodromy matrix belonging to the whole system. Finally, the results of the numerical simulation are in almost perfect agreement with the analog results obtained with PSIM. The results obtained in this work have not yet been reported in the literature to the best of the author's knowledge and therefore deserve to be disseminated.

References

  1. [1]  Slotine, J.J.E. and Li, W. (1991), Applied Nonlinear Control, Englewood Cliffs, NJ: Prentice hall, 199(1), 705.
  2. [2]  Lischinsky, P., Canudas-de-Wit, C., and Morel, G. (1999), Friction compensation for an industrial hydraulic robot, IEEE Control Systems Magazine, 19(1), 25-32.
  3. [3]  Kara, T. and Ekera, I. (2003), Experimental nonlinear identification of a three-mass system rotating in two directions, Measurement and Control, 36(10), 309-315.
  4. [4]  Lyshevski, S.E. (1999), Nonlinear control of mechatronic systems with permanent-magnet DC motors, Mechatronics, 9(5), 539-552.
  5. [5]  Sakthivel, R., Santra, S., Marshal Anthoni, S., and Kuppili, V. (2017), Synchronisation and anti-synchronisation of chaotic systems with application to DC--DC boost converter, IET Generation, Transmission and Distribution, 11(4), 959-967.
  6. [6]  Radwan, A.G., Emira, A.A., AbdelAty, A.M., and Azar, A.T. (2018), Modeling and analysis of fractional order DC-DC converter, ISA transactions, 82, 184-199.
  7. [7]  Wang, Y., Xu, L., Yang, Z., Xie, H., Jiang, P., Dai, J., Luo, W., Yao, Y., Hitz, E., Yang, R. and Yang, B. (2018), High temperature thermal management with boron nitride nanosheets, Nanoscale, 10(1), 167-173.
  8. [8]  Sabarish, P., Karthick, R., Sindhu, A., and Sathiyanathan, N. (2021), Investigation on performance of solar photovoltaic fed hybrid semi impedance source converters, Materials Today: Proceedings, 45, 1597-1602.
  9. [9]  Lyshevski, S.E. (1999), Nonlinear control of mechatronic systems with permanent-magnet DC motors, Mechatronics, 9(5), 539-552.
  10. [10]  Jang, J.O. and Jeon, G.J. (2000), A parallel neuro-controller for DC motors containing nonlinear friction, Neurocomputing, 30(1-4), 233-248.
  11. [11]  Gonz{a}lez-Morales, D., Garc{i}a-Beltr{a}n, O., Aldana-Rodr{i}guez, Y. A., and L{o}pez-Santos, O. (2020), Experimental Modelling of DC Motor for Position Control Systems Involving Nonlinear Phenomena. In Applied Computer Sciences in Engineering: 7th Workshop on Engineering Applications, WEA 2020, Bogota, Colombia, October 7--9, 2020, Proceedings, Springer International Publishing, 7, 516-528.
  12. [12]  Moussa, I. and Khedher, A. (2020), A theoretical and experimental study of a laboratory wind turbine emulator using DC-Motor controlled by an FPGA-based approach, Electric Power Components and Systems, 48(4-5), 399-409.
  13. [13]  Osmani, K., Haddad, A., Lemenand, T., Castanier, B., and Ramadan, M. (2021), An investigation on maximum power extraction algorithms from PV systems with corresponding DC-DC converters, Energy, 224, 120092.
  14. [14]  Chen, J.H., Chau, K.T., and Chan, C.C. (2000), Analysis of chaos in current-mode-controlled DC drive systems, IEEE Transactions on Industrial Electronics, 47(1), 67-76.
  15. [15]  El Aroudi, A., Pelaez, J., Feki, M., and Robert, B.G.M. (2009), Stability analysis of two-cell buck converter driven dc motor with a discrete-time closed loop. In 2009 6th International Multi-Conference on Systems, Signals and Devices, IEEE, 1-6.
  16. [16]  Chakrabarty, K., Kar, U., and Kundu, S. (2011), Bifurcation behavior and Co-existing attractor of PWM controlled DC drives, In 2011 Annual IEEE India Conference, 1-6.
  17. [17]  Virgala, I., Frankovsk{y}, P., and Kenderov{a}, M. (2013), Friction effect analysis of a DC motor, American Journal of Mechanical Engineering, 1(1), 1-5.
  18. [18]  Kundu, S., Kar, U., and Chakrabarty, K. (2013), Co-existence of multiple attractors in the PWM controlled DC drives, The European Physical Journal Special Topics, 222(3), 699-709.
  19. [19]  Kengne, E.R.M., Kammogne, A.S.T., Siewe, M.S., Tamo, T.T., Azar, A.T., Mahlous, A.R., Tounsi, M., and Khan, Z.I. (2023), Bifurcation analysis of a photovoltaic power source interfacing a current-mode-controlled boost converter with limited current sensor bandwidth for maximum power point tracking, Sustainability, 15(7), 6097.
  20. [20]  Chakrabarty, K. and Kar, U. (2012), Control of bifurcation of PWM controlled dc drives, In 2012 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 1-8.
  21. [21]  Maity, A., Pal, A., Saha, A., Kundu, B., Mukherjee, P., Bhattacharyya, R., and Adhikary, S. (2020), Chaotic advection using universal motor drive, In 2020 IEEE VLSI DEVICE CIRCUIT AND SYSTEM (VLSI DCS), 219-224, IEEE.
  22. [22]  Chakrabarty, K., Kar, U., and Kundu, S. (2013), Control of chaos in current controlled DC drives, Journal of Circuits, Systems and Computers, 22(05), 1350035.
  23. [23]  Hoyos Velasco, F.E., Candelo-Becerra, J.E., and Rinc{o}n Santamar{i}a, A. (2018), Dynamic analysis of a permanent magnet DC motor using a Buck converter controlled by ZAD-FPIC, Energies, 11(12), 3388.
  24. [24]  Yu, F., Shen, H., Liu, L., Zhang, Z., Huang, Y., He, B., Cai, S., Song, Y., Yin, B., Du, S., and Xu, Q. (2020), CCII and FPGA realization: a multistable modified fourth-order autonomous Chua's chaotic system with coexisting multiple attractors, Complexity, 2020.
  25. [25]  Tewa Kammogne, A.S., Kengne, E.M., Vaidyanathan, S., Bertrand Fotsin, H., and Tatietse Tamo, T. (2022), Complex dynamics and effects of memristive load using current-mode-controlled in buck converter, Discrete Dynamics in Nature and Society, 2022.
  26. [26]  Chakrabarty, K. and Kar, U. (2015), Stabilization of unstable periodic orbits in DC drives. In 2015 International Conference on Electrical Engineering and Information Communication Technology (ICEEICT), IEEE, 1-6.
  27. [27]  Ghosh, M., Panda, G.K., and Saha, P.K. (2017), Analysis of chaos and bifurcation due to slotting effect and commutation in a current discontinuous permanent magnet brushed dc motor drive, IEEE Transactions on Industrial Electronics, 65(3), 2001-2008.
  28. [28]  Tang, T., Yang, M., Li, H., and Shen, D. (2006), A new discovery and analysis on chaos and bifurcation in DC motor drive system with full-bridge converter, In 2006 1ST IEEE Conference on Industrial Electronics and Applications, IEEE, 1-6.
  29. [29]  Okafor, N., Zahawi, B., Giaouris, D., and Banerjee, S. (2010), Chaos, coexisting attractors, and fractal basin boundaries in DC drives with full-bridge converter, In Proceedings of 2010 IEEE International Symposium on Circuits and Systems, IEEE, 129-132.
  30. [30]  Lischinsky, P., Canudas-de-Wit, C., and Morel, G. (1999), Friction compensation for an industrial hydraulic robot, IEEE Control Systems Magazine, 19(1), 25-32.
  31. [31]  Yatim, S.A.M., Ibrahim, Z.B., Othman, K.I., and Suleiman, M.B. (2011), A quantitative comparison of numerical method for solving stiff ordinary differential equations, Mathematical Problems in Engineering, 2011, 1-12.
  32. [32]  Westin, C. and Irani, R.A. (2020), Continuously differentiable stick-slip friction model with applications to cable simulation using nonlinear finite elements, In 2020 IEEE Conference on Control Technology and Applications (CCTA), IEEE, 679-684.
  33. [33]  Drazin, P.G. and Drazin, P.D. (1992), Nonlinear systems, (10), Cambridge University Press.
  34. [34]  Zhu, W., Mohler, R.R., Spee, R., Mittelstadt, W.A., and Maratukulam, D. (1996), Hopf bifurcations in a SMIB power system with SSR, IEEE Transactions on Power Systems, 11(3), 1579-1584.
  35. [35]  Yahyazadeh, M., Johari, M.S., and HosseinNia, S.H. (2021), Novel particle swarm optimization algorithm based on president election: Applied to a renewable hybrid power system controller, International Journal of Engineering, 34(1), 97-109.
  36. [36]  Brandon, Q., Ueta, T., Fournier-Prunaret, D., and Kousaka, T. (2009), Numerical bifurcation analysis framework for autonomous piecewise-smooth dynamical systems, Chaos, Solitons and Fractals, 42(1), 187-201.
  37. [37]  Kammogne, A.S.T., Choudja, P.O.M., Martin, S.S., and Bertrand, F.H. (2022), Unknown matched and mismatched disturbances estimation by effective adaptive control for a fractional-order DC-DC buck-boost converter, International Journal of Nonlinear Dynamics and Control, 2(2), 133-159.
  38. [38]  Adhikary, S., Chatterjee, D., and Chakrabarty, K. (2020), Control of bifurcation in a PWM controlled DC series motor drive. In 2020 IEEE Calcutta Conference (CALCON), IEEE, 263-267.
  39. [39]  Luo, A.C.J., and Gegg, B.C. (2006), On the mechanism of stick and nonstick, periodic motions in a periodically forced, linear oscillator with dry friction, In ASME International Mechanical Engineering Congress and Exposition, 47055, 335-345.
  40. [40]  Guo, S. and Luo, A.C. (2021), On existence and bifurcations of periodic motions in discontinuous dynamical systems, International Journal of Bifurcation and Chaos, 31(04), 2150063.
  41. [41]  Luo, A.C.J. and Huang, J. (2012), Discontinuous dynamics of a non-linear, self-excited, friction-induced, periodically forced oscillator, Nonlinear Analysis: Real World Applications, 13(1), 241-257.
  42. [42]  Luo, A.C.J. and Gegg, B.C. (2006), Grazing phenomena in a periodically forced, friction-induced, linear oscillator, Communications in Nonlinear Science and Numerical Simulation, 11(7), 777-802.
  43. [43]  Kundu, S., Chatterjee, D., and Chakrabarty, K. (2017), Effect of smoothing reactor on the performance of a PWM chopper fed Dc motor drive. In 2017 IEEE Calcutta Conference (CALCON),IEEE, 134-139. %
  44. [44]  Slotine, J.J.E. and Li, W. (1991), Applied Nonlinear Control, Englewood Cliffs, NJ: Prentice hall, %199(1), 705. % %
  45. [45]  Lischinsky, P., Canudas-de-Wit, C., and Morel, G. (1999), Friction compensation for an industrial hydraulic robot, IEEE Control Systems Magazine, 19(1), 25-32. % %
  46. [46]  Kara, T. and Ekera, I. (2003), Experimental nonlinear identification of a three-mass system rotating in two directions, Measurement and Control, 36(10), 309-315. % %
  47. [47]  Lyshevski, S.E. (1999), Nonlinear control of mechatronic systems with permanent-magnet DC motors, Mechatronics, 9(5), 539-552. % %
  48. [48]  Sakthivel, R., Santra, S., Marshal Anthoni, S., and Kuppili, V. (2017), Synchronisation and anti-synchronisation of chaotic systems with application to DC--DC boost converter, IET Generation, Transmission and Distribution, 11(4), 959-967. % %
  49. [49]  Radwan, A.G., Emira, A.A., AbdelAty, A.M., and Azar, A.T. (2018), Modeling and analysis of fractional order DC-DC converter, ISA transactions, 82, 184-199. % %
  50. [50]  Wang, Y., Xu, L., Yang, Z., Xie, H., Jiang, P., Dai, J., Luo, W., Yao, Y., Hitz, E., Yang, R. and Yang, B. (2018), High temperature thermal management with boron nitride nanosheets, Nanoscale, 10(1), 167-173. % %
  51. [51]  Sabarish, P., Karthick, R., Sindhu, A., and Sathiyanathan, N. (2021), Investigation on performance of solar photovoltaic fed hybrid semi impedance source converters, Materials Today: Proceedings, 45, 1597-1602. % %
  52. [52]  Lyshevski, S.E. (1999), Nonlinear control of mechatronic systems with permanent-magnet DC motors, Mechatronics, 9(5), 539-552. % %
  53. [53]  Jang, J.O. and Jeon, G.J. (2000), A parallel neuro-controller for DC motors containing nonlinear friction, Neurocomputing, 30(1-4), 233-248. % %
  54. [54]  Gonz{a}lez-Morales, D., Garc{i}a-Beltr{a}n, O., Aldana-Rodr{i}guez, Y. A., and L{o}pez-Santos, O. (2020), Experimental Modelling of DC Motor for Position Control Systems Involving Nonlinear Phenomena. In Applied Computer Sciences in Engineering: 7th Workshop on Engineering Applications, WEA 2020, Bogota, Colombia, October 7--9, 2020, Proceedings, Springer International Publishing, 7, 516-528. % %
  55. [55]  Moussa, I. and Khedher, A. (2020), A theoretical and experimental study of a laboratory wind turbine emulator using DC-Motor controlled by an FPGA-based approach, Electric Power Components and Systems, 48(4-5), 399-409. % %
  56. [56]  Osmani, K., Haddad, A., Lemenand, T., Castanier, B., and Ramadan, M. (2021), An investigation on maximum power extraction algorithms from PV systems with corresponding DC-DC converters, Energy, 224, 120092. % %
  57. [57]  Chen, J.H., Chau, K.T., and Chan, C.C. (2000), Analysis of chaos in current-mode-controlled DC drive systems, IEEE Transactions on Industrial Electronics, 47(1), 67-76. % %
  58. [58]  El Aroudi, A., Pelaez, J., Feki, M., and Robert, B.G.M. (2009), Stability analysis of two-cell buck converter driven dc motor with a discrete-time closed loop. In 2009 6th International Multi-Conference on Systems, Signals and Devices, IEEE, 1-6. % %
  59. [59]  Chakrabarty, K., Kar, U., and Kundu, S. (2011), Bifurcation behavior and Co-existing attractor of PWM controlled DC drives, In 2011 Annual IEEE India Conference, 1-6. % %
  60. [60]  Virgala, I., Frankovsk{y}, P., and Kenderov{a}, M. (2013), Friction effect analysis of a DC motor, American Journal of Mechanical Engineering, 1(1), 1-5. % %
  61. [61]  Kundu, S., Kar, U., and Chakrabarty, K. (2013), Co-existence of multiple attractors in the PWM controlled DC drives, The European Physical Journal Special Topics, 222(3), 699-709. % %
  62. [62]  Kengne, E.R.M., Kammogne, A.S.T., Siewe, M.S., Tamo, T.T., Azar, A.T., Mahlous, A.R., Tounsi, M., and Khan, Z.I. (2023), Bifurcation analysis of a photovoltaic power source interfacing a current-mode-controlled boost converter with limited current sensor bandwidth for maximum power point tracking, Sustainability, 15(7), 6097. % %
  63. [63]  Okafor, N., Zahawi, B., Giaouris, D., and Banerjee, S. (2010), Chaos, coexisting attractors, and fractal basin boundaries in DC drives with full-bridge converter, In Proceedings of 2010 IEEE International Symposium on Circuits and Systems, IEEE, 129-132. % %
  64. [64]  Chakrabarty, K. and Kar, U. (2012), Control of bifurcation of PWM controlled dc drives, In 2012 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 1-8. % %
  65. [65]  Maity, A., Pal, A., Saha, A., Kundu, B., Mukherjee, P., Bhattacharyya, R., and Adhikary, S. (2020), Chaotic advection using universal motor drive, In 2020 IEEE VLSI DEVICE CIRCUIT AND SYSTEM (VLSI DCS), 219-224, IEEE. % %
  66. [66]  Kundu, S., Chatterjee, D., and Chakrabarty, K. (2017), Effect of smoothing reactor on the performance of a PWM chopper fed Dc motor drive. In 2017 IEEE Calcutta Conference (CALCON),IEEE, 134-139. % %
  67. [67]  Chakrabarty, K., Kar, U., and Kundu, S. (2013), Control of chaos in current controlled DC drives, Journal of Circuits, Systems and Computers, 22(05), 1350035. % %
  68. [68]  Hoyos Velasco, F.E., Candelo-Becerra, J.E., and Rinc{o}n Santamar{i}a, A. (2018), Dynamic analysis of a permanent magnet DC motor using a Buck converter controlled by ZAD-FPIC, Energies, 11(12), 3388. % %
  69. [69]  Yu, F., Shen, H., Liu, L., Zhang, Z., Huang, Y., He, B., Cai, S., Song, Y., Yin, B., Du, S., and Xu, Q. (2020), CCII and FPGA realization: a multistable modified fourth-order autonomous Chua's chaotic system with coexisting multiple attractors, Complexity, 2020. % %
  70. [70]  Tewa Kammogne, A.S., Kengne, E.M., Vaidyanathan, S., Bertrand Fotsin, H., and Tatietse Tamo, T. (2022), Complex dynamics and effects of memristive load using current-mode-controlled in buck converter, Discrete Dynamics in Nature and Society, 2022. % %
  71. [71]  Chakrabarty, K. and Kar, U. (2015), Stabilization of unstable periodic orbits in DC drives. In 2015 International Conference on Electrical Engineering and Information Communication Technology (ICEEICT), IEEE, 1-6. % %
  72. [72]  Ghosh, M., Panda, G.K., and Saha, P.K. (2017), Analysis of chaos and bifurcation due to slotting effect and commutation in a current discontinuous permanent magnet brushed dc motor drive, IEEE Transactions on Industrial Electronics, 65(3), 2001-2008. % %
  73. [73]  Tang, T., Yang, M., Li, H., and Shen, D. (2006), A new discovery and analysis on chaos and bifurcation in DC motor drive system with full-bridge converter, In 2006 1ST IEEE Conference on Industrial Electronics and Applications, IEEE, 1-6. % %
  74. [74]  Lischinsky, P., Canudas-de-Wit, C., and Morel, G. (1999), Friction compensation for an industrial hydraulic robot, IEEE Control Systems Magazine, 19(1), 25-32. % %
  75. [75]  Westin, C. and Irani, R.A. (2020), Continuously differentiable stick-slip friction model with applications to cable simulation using nonlinear finite elements, In 2020 IEEE Conference on Control Technology and Applications (CCTA), IEEE, 679-684. % %
  76. [76]  Drazin, P.G. and Drazin, P.D. (1992), Nonlinear systems, (10), Cambridge University Press. % %
  77. [77]  Zhu, W., Mohler, R.R., Spee, R., Mittelstadt, W.A., and Maratukulam, D. (1996), Hopf bifurcations in a SMIB power system with SSR, IEEE Transactions on Power Systems, 11(3), 1579-1584. % %
  78. [78]  Yahyazadeh, M., Johari, M.S., and HosseinNia, S.H. (2021), Novel particle swarm optimization algorithm based on president election: Applied to a renewable hybrid power system controller, International Journal of Engineering, 34(1), 97-109. % %
  79. [79]  Yatim, S.A.M., Ibrahim, Z.B., Othman, K.I., and Suleiman, M.B. (2011), A quantitative comparison of numerical method for solving stiff ordinary differential equations, Mathematical Problems in Engineering, 2011. % %
  80. [80]  Brandon, Q., Ueta, T., Fournier-Prunaret, D., and Kousaka, T. (2009), Numerical bifurcation analysis framework for autonomous piecewise-smooth dynamical systems, Chaos, Solitons and Fractals, 42(1), 187-201. % %
  81. [81]  Kammogne, A.S.T., Choudja, P.O.M., Martin, S.S., and Bertrand, F.H. (2022), Unknown matched and mismatched disturbances estimation by effective adaptive control for a fractional-order DC-DC buck-boost converter, International Journal of Nonlinear Dynamics and Control, 2(2), 133-159. % %
  82. [82]  Adhikary, S., Chatterjee, D., and Chakrabarty, K. (2020), Control of bifurcation in a PWM controlled DC series motor drive. In 2020 IEEE Calcutta Conference (CALCON), IEEE, 263-267. % %
  83. [83]  Luo, A.C.J., and Gegg, B.C. (2006), On the mechanism of stick and nonstick, periodic motions in a periodically forced, linear oscillator with dry friction. % %
  84. [84]  Guo, S. and Luo, A.C. (2021), On existence and bifurcations of periodic motions in discontinuous dynamical systems, International Journal of Bifurcation and Chaos, 31(04), 2150063. % %
  85. [85]  Henao, M.M., Cristiano, R., and Pagano, D.J. (2022), Bifurcation analysis of 3D-PWS systems with two transversal switching boundaries: A case study in power electronics, Physica D: Nonlinear Phenomena, 442, 133505. % %
  86. [86]  Luo, A.C.J. and Huang, J. (2012), Discontinuous dynamics of a non-linear, self-excited, friction-induced, periodically forced oscillator, Nonlinear Analysis: Real World Applications, 13(1), 241-257. % %
  87. [87]  Luo, A.C.J. and Gegg, B.C. (2006), Grazing phenomena in a periodically forced, friction-induced, linear oscillator, Communications in Nonlinear Science and Numerical Simulation, 11(7), 777-802.