Skip Navigation Links
Journal of Applied Nonlinear Dynamics
Miguel A. F. Sanjuan (editor), Albert C.J. Luo (editor)

ODE Admitting Two-dimensional Algebras of Dynamic Symmetries

Journal of Applied Nonlinear Dynamics 3(1) (2014) 27--36 | DOI:10.5890/JAND.2014.03.003

M.I. Timoshin

Ulyanovsk State Technical University, Ulyanovsk, Russian Federation

Download Full Text PDF

 

Abstract

A generalization of S. Lie’s classification of second order ODEs on two-dimensional algebras of point symmetries is constructed. First integrals for found types second order ODEs are reduced. The pos- sibility of the determination of two-dimensional algebras of dynamic symmetries over number field is considered. Interconnection of dy- namic and contact symmetries is demonstrated. On a concrete ex- ample it is shown the procedure of the decomposition of a contact transformation into superposition of point transformation and Leg- endre transformation.

References

  1. [1]  Stephani, H. (1989), Differential Equations: Their Solution Using Symmetries, Cambridge university Press.
  2. [2]  Timoshin, M.I. (2009), Dynamic symmetries of ODEs, Ufa Mathematical Journal , 1(3), 132–138.
  3. [3]  Lie, S. (1891), Vorlesugen uber Differentialgeichungen mit bekannten infinitesimalen TransformationenVorlesugen uber Differentialgeichungen mit bekannten infinitesimalen Transformationen, Leipzig: B.G. Teubner.
  4. [4]  Timoshin, M.I. (2009), Dynamic symmetries of ODEs, Ufa Mathematical Journal , 1(3), 132–138.
  5. [5]  Goursat, E. (1917), Cours D’analyse mathematique, Gauthier-Villars, Paris, tome 2, part 2.
  6. [6]  Ibragimov, N.H. (1985), Transformation Groups Applied to Mathematical Physics, Dorbrecht, Reidel.
  7. [7]  Timoshin, M.I. (2001), Contact symmetries and finite contact transformation, Repots present at international conference ”Mogran” USATU, Ufa Mathematical Journal, 140–143.
  8. [8]  Timoshin, M.I. (2002), To the Problem of Contact Symmetries Similarity for Ordinary Differential Equations, Reports present at 16 international Symposium on Nonlinear Acoustics Moscow State University , 1, 611–614.
  9. [9]  Klein, F. (1926), Vorlesungen uber Hohere Geometrie, Verlag Van Julius Springer, Berlin.