Journal of Vibration Testing and System Dynamics
Research on Fluid Dynamics Optimization of a Fully Hydrodynamic Centrifugal Blood Pump
Journal of Vibration Testing and System Dynamics 9(3) (2025) 291--308 | DOI:10.5890/JVTSD.2025.09.007
Zhenrong Guo\textsuperscript{1}, Yang Lv\textsuperscript{1}, Fangxin Li\textsuperscript{1}, Jianliang Liu\textsuperscript{1}, Yanying Dong\textsuperscript{2}, Yeyin Xu\textsuperscript{1}
noindenttextsuperscript{1} hangindent=1em School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China.
noindenttextsuperscript{2} hangindent=1em Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710049,PR China.
Download Full Text PDF
Abstract
Artificial cardiac assist devices are effective devices for the treatment of heart failure. In this paper, two semi-open impeller centrifugal blood pumps with the characteristics of full hydrodynamic suspension are optimized based on fluid dynamics. The dynamic pressure coupling effects between the impeller and the blood are crucial for the safe installation and circulation of the blood pump. Numerical simulations of the blood pump are conducted using computational fluid dynamics (CFD) methods, which include unstructured mesh, ${k} $--$\varepsilon$ model, and coupled algorithms, to investigate the influence of various parameters such as the number of blades, outlet angle, wrap angle, blade curvature, and structural elements like guide column and splitter blades on the performance of the blood pump. The results show that both types of impellers perform optimally with 10 blades, equipped with guide vanes and splitter blades. For the favorable parameter design model, it is recommended to select an outlet angle of 60${^\circ}$ and a wrap angle of 120${{}^\circ}$, while for the Bezier curve design model, it is suggested to choose an outlet angle of 30${{}^\circ}$ and a blade curvature angle of 90${{}^\circ}$
Acknowledgments
This work is supported by the National Nature Science Foundation of China (Grant No. 12102319) and the Key R\&D and Transformation Plan Project of Qinghai Province(NO. 2023-QY-215).
References
-
[1]  | Heart Failure Society Of America. (2006), Executive summary: HFSA 2006 comprehensive heart failure practice guideline, Journal of Cardiac Failure, 12(1), 10-38.
|
-
[2]  | Vega, J.D., Moore, J., Murray, S., Chen, J.M., Johnson, M.R., and Dyke, D.B. (2009), Heart transplantation in the United States, 1998--2007, American Journal of Transplantation, 9(4), 932-941.
|
-
[3]  | Dong, D., Jiang, J., and Li, D. (2023), Numerical analysis of a novel rotating piston blood pump based on CFD, Journal of Physics: Conference Series, 2610(1), 012037.
|
-
[4]  | Chua, L.P., Su, B., Lim, T.M., and Zhou, T. (2007), Numerical Simulation of an axial blood pump, Artificial Organs, 31(7), 560-570.
|
-
[5]  | Yang, W.B., Zhou, J., Xiao, W.H., Peng, S.J., Hu, Y.F., Li, M., and Wu, H.C. (2022), Effect of conical spiral flow channel and impeller parameters on flow field and hemolysis performance of an axial magnetic blood pump, Processes, 10(5), 853.
|
-
[6]  | Oran, E., Abo-Serie, E., Jewkes, J., Henry, M., and Oran, B. (2024), Design and optimisation of an intra-aortic shrouded rotor axial pump, Journal of Biomechanics, 162, 111858.
|
-
[7]  | Han, D., Leibowitz, J.L., Han, L., Wang, S., He, G., Griffith, B. P., and Wu, Z.J. (2022), Computational fluid dynamics analysis and experimental hemolytic performance of three clinical centrifugal blood pumps: Revolution, rotaflow and centrimag, Medicine in Novel Technology and Devices, 15, 100153.
|
-
[8]  | Mehra, M.R., Uriel, N., Naka, Y., Cleveland Jr, J.C., Yuzefpolskaya, M., Salerno, C.T., Walsh, M.N., Milano, C.A., Patel, C.B., Hutchins, S.W., and Ransom, J. (2019), A Fully magnetically levitated left ventricular assist device --- Final report, New England Journal of Medicine, 380(17), 1618-1627.
|
-
[9]  | Akamatsu, T., Tsukiya, T., Nishimura, K., Park, C., and Nakazeki, T. (1995), Recent studies of the centrifugal blood pump with a magnetically suspended impeller, Artificial Organs, 19(7), 631-634.
|
-
[10]  | Li, T., Zhou, J., and Yu, Y. (2021), Optimization analysis for blades of artificial heart pump based on CFD, Journal of Physics: Conference Series, 1985(1): 012008.
|
-
[11]  | Wiegmann, L., Bo\"{e}s, S., De Z{e}licourt, D., Thamsen, B., Schmid Daners, M., Meboldt, M., and Kurtcuoglu, V. (2018), Blood pump design variations and their influence on hydraulic performance and indicators of hemocompatibility, Annals of Biomedical Engineering, 46(3), 417-428.
|
-
[12]  | Wu, P., Huo, J., Dai, W., Wu, W.T., Yin, C., and Li, S. (2021), On the optimization of a centrifugal maglev blood pump through design variations, Frontiers in Physiology, 12, 699891.
|
-
[13]  | Li, H., Gou, Z., Huang, F., Ruan, X., Qian, W., and Fu, X. (2019), Evaluation of the hemolysis and fluid dynamics of a ventricular assist device under the pulsatile flow condition, Journal of Hydrodynamics, 31(5), 965-975.
|
-
[14]  | Yu, S.C.M., Ng, B.T.H., Chan, W.K., and Chua, L.P. (2000), The flow patterns within the impeller passages of a centrifugal blood pump model, Medical Engineering $\&$ Physics, 22(6), 381-393.
|
-
[15]  | Wu, J., Antaki, J.F., Verkaik, J., Snyder, S., and Ricci, M. (2021), Computational fluid dynamics-based design optimization for an implantable miniature maglev pediatric ventricular assist device, Journal of Fluids Engineering, 134(4), 041101.
|
-
[16]  | Xu, B., Luo, J.P., and Huang, Q.G. (2022), Structural improvement of mixed-flow blood pump based on numerical simulation, Journal of Shanghai University of Science and Technology, 44(3), 245-252.
|
-
[17]  | Kou, X.R. (2023), Analysis of Flow Characteristics and Hydraulic Characteristics of S-shaped blade of centrifugal pump, Lanzhou University of Technology.
|
-
[18]  | Liu, D., Huang, K., Ni, Z.J., Yang, S., and You, B.J. (2022), Effects of blade Angle on hydraulic performance and wear characteristics of centrifugal pumps, Journal of Drainage and Irrigation Machinery Engineering, 40(10), 973-980.
|
-
[19]  | Li, Y.T., Lu, S., Wu, J., and You, B.J. (2024), Effect of changing placement angle of impeller blade on performance of centrifugal pump, Green Science and Technology, 26(2), 189-193.
|
-
[20]  | Chen, H.Y., Soong, W.W., Wang, B., Ma, X.T., and Du, C. (2021), Influence of leading edge Shape on internal flow of high specific speed centrifugal pump, Water Resources and Hydropower Technology, 52(10), 80-88.
|