Journal of Vibration Testing and System Dynamics
Analysis and Control of Piezoelectric Miniature Pump
Journal of Vibration Testing and System Dynamics 9(3) (2025) 261--279 | DOI:10.5890/JVTSD.2025.09.005
Jirasak Saetan, Nyesunthi Apiwattanalunggarn
Department of Mechanical Engineering, Kasetsart University, 50 Phaholyothin Road, Jatujak, Bangkok 10900, Thailand
Download Full Text PDF
Abstract
This research aims to enhance the efficiency of a valveless piezoelectric miniature pump through the implementation of feedback control. Finite element analysis reveals that the motion of the structure impacts pumping efficiency. Using plant identification, a linear finite-element model of the miniature pump is reduced to a single-mode model with a single input. To increase the pumping efficiency, a closed-loop tracking control based on a nonlinear control technique, i.e. exact feedback linearization, is employed. The closed-loop miniature pump outperforms the open-loop miniature pump in terms of settling time and the pressure load existence at an outlet of the miniature pump, also improving efficiency by tracking a reference signal with two frequencies.
References
-
[1]  |
Asadi Dereshgi, H., Dal, H., and Yildiz, M.Z. (2021), Piezoelectric micropumps: state of the art review, Microsystem Technologies, 27, 4127–4155.
|
-
[2]  |
Ardito, R., Bertarelli, E., Corigliano, A., and Gafforelli, G. (2013), On the application of piezolaminated composites to diaphragm micropumps, Composite Structures, 99, 231–240.
|
-
[3]  |
Wang, J., Zhao, X., Chen, X., and Yang, H. (2019), A Piezoelectric resonance pump based on a flexible support, Micromachines, 10(3), 169.
|
-
[4]  |
Srinivasa Rao, K., Hamza, M., Ashok Kumar, P., and Girija Sravani, K. (2020), Design and optimization of MEMS based piezoelectric actuator for drug delivery systems, Microsystem Technologies, 26, 1671-1679.
|
-
[5]  |
Farshchi Yazdi, S.A.F., Corigliano, A., and Ardito, R. (2019), 3-D Design and Simulation of a Piezoelectric Micropump, Micromachines, 10(4), 259.
|
-
[6]  |
Liu, X., Li, X., Wang, M., Cao, S., Wang, X., and Liu, G. (2022), A High-performance Piezoelectric Micropump with multi-chamber in series, Applied Sciences, 12(9), 4483.
|
-
[7]  |
Olsson, A., Stemme, G., and Stemme, E. (1995), A valve-less planar fluid pump with two pump chambers, Sensors and Actuators A: Physical, 47(1-3), 549-556.
|
-
[8]  |
Guo, L., Yan, W., Xu, Y., and Chen, Y. (2012), Valveless piezoelectric micropump of parallel double chambers, International Journal of Precision Engineering and Manufacturing, 13, 771-776.
|
-
[9]  |
Peng, T., Guo, Q., Yang, J., Xiao, J., Wang, H., Lou, H., and Liang, X. (2019), A high-flow, self-filling piezoelectric pump driven by hybrid connected multiple chambers with umbrella-shaped valves, Sensors and Actuators B: Chemical, 301.
|
-
[10]  |
Pan, Q.S., He, L.G., Huang, F.S., Wang, X.Y., and Feng, Z.H. (2015), Piezoelectric micropump using dual-frequency drive. Sensors and Actuators A: Physical, 229, 86–93.
|
-
[11]  |
Woo, J., Sohn, D.K., and Ko, H.S. (2020), Performance and flow analysis of small piezo pump, Sensors and Actuators A: Physical, 301.
|
-
[12]  |
Huang, W., Lai, L., Chen, Z., Chen, X., Huang, Z., Dai, J., Zhang, F., and Zhang, J. (2021), Research on a Piezoelectric pump with flexible valves, Applied Sciences, 11(7), 2909.
|
-
[13]  |
Woias, P. (2005), Micropumps—past, progress and future prospects, Sensors and Actuators B: Chemical, 105(1), 28-38.
|
-
[14]  |
Stemme, E. and Stemme, G. (1993), A valveless diffuser/nozzle-based fluid pump, Sensors and Actuators A: Physical, 39(2), 159-167.
|
-
[15]  |
Yan, Q., Yin, Y., Sun, W., and Fu, J. (2021), Advances in valveless piezoelectric pumps, Applied Sciences, 11(15), 7061.
|
-
[16]  |
Singh, S., Kumar, N., George, D., and Sen, A.K. (2015), Analytical modeling, simulations and experimental studies of a PZT actuated planar valveless PDMS micropump, Sensors and Actuators A: Physical, 225, 81-94.
|
-
[17]  |
Bußmann, A., Leistner, H., Zhou, D., Wackerle, M., Congar, Y., Richter, M., and Hubbuch, J. (2021), Piezoelectric Silicon Micropump for Drug Delivery Applications, Applied Sciences, 11(17), 8008.
|
-
[18]  |
Ni, J., Xuan, W., Li, Y., Chen, J., Li, W., Cao, Z., Dong, S., Jin, H., Sun, L., and Luo, J. (2023), Analytical and experimental study of a valveless piezoelectric micropump with high flowrate and pressure load, Microsystems $\&$ Nanoengineering, 9, 72.
|
-
[19]  |
Spencer, W.J., Corbett, W.T., Dominguez, L., and Shafer, B.D. (1978), An electronically controlled piezoelectric insulin pump and valves, IEEE Transactions on Sonics and Ultrasonics, 25, 153-156.
|
-
[20]  |
Gass, V., van der Schoot, B.H.,Jeanneret, S., and de Rooij, N.F. (1994), Integrated flow-regulated silicon micropump, Sensors and Actuators A: Physical, 43, 335-338.
|
-
[21]  |
Kaçar, A., Özer, M.B., and Taşcıoğlu, Y. (2020), A novel artificial pancreas: energy efficient valveless Piezoelectric actuated closed-loop insulin pump for T1DM, Applied Sciences, 10(15), 5294.
|
-
[22]  |
Chen, L., Liu, Y., Sun, L., Qu, D., and Min, J. (2010), Intelligent control of Piezoelectric Micropump based on MEMS flow sensor, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 3055-3060.
|
-
[23]  |
Yeming, S. and Junyao, W. (2019), Digitally-controlled driving power supply for dual-active-valve piezoelectric pump, Microsystem Technologies, 25, 1257–1265.
|
-
[24]  |
Erturk, A. and Inman, D.J. (2011), Piezoelectric Energy Harvesting, John Wiley \& Sons.
|
-
[25]  |
Meirovitch, L. (1997), Principles and Techniques of Vibrations, Prentice Hall.
|
-
[26]  |
Gerhart, P.M., Gerhart, A.L., and Hochstein, J.I. (2017), Munson's Fluid Mechanics, Wiley.
|
-
[27]  |
Apiwattanalunggarn, P., Shaw, S.W., Pierre, C., and Jiang, D. (2003), Finite-element-based nonlinear modal reduction of a rotating beam with Large-Amplitude motion, Journal of Vibration and Control, 9(3-4), 235-263.
|
-
[28]  |
Khalil, H.K. (2002), Nonlinear Systems, Prentice Hall.
|