Journal of Vibration Testing and System Dynamics
On Nonlinear and Nonideal Dynamics of Three Coupled Van der Pol Oscillators Applied to Hemodynamics
Journal of Vibration Testing and System Dynamics 9(2) (2025) 135--146 | DOI:10.5890/JVTSD.2025.06.004
Gabriella de O. M. Silva$^1$, Mauricio A. Ribeiro$^1$, Jose Manoel Balthazar$^{1,3}$, Jeferson J. de Lima$^1$, Cristhiane Gonçalves$^1$, Vinicius Piccirilo$^1$, Marcus Varanis$^{2}$, Clivaldo de Oliveira$^4$, Ângelo M. Tusset$^1$
$^{1}$ Departament of Electronics Engineering, University Federal Technology of Paraná - UTFPR, R. Doutor
Washington Subtil Chueire, 330 - Jardim Carvalho, Ponta Grossa, Paraná, Brazil
$^{2}$ Physics Institute, Federal University of Mato Grosso – UFMG, Av. Costa e Silva, Bairro Universitário, Campo
Grande, Mato Grosso do Sul, Brazil
$^{3}$ Senior Professor, Department of Mechanics Engineering, State University of São Paulo – UNESP, Av. Eng.
Luís Edmundo Carrijo Coube, 2085 - Nucleo Res. Pres. Geisel, Bauru, São Paulo, Brazil
$^{4}$ Departament of Mechanical Engineering, University Federal of Dourados - UFGD, R. João Rosa Góes, Vila
Progresso, Dourados, Mato Grosso do Sul, Brazil
Download Full Text PDF
Abstract
In this paper, we examined the nonlinear dynamic behavior of the coupling interactions between three oscillators that describe the regions of the human heart responsible for electrical impulses. Specifically, we focused on the sinoatrial node, the atrioventricular node, and the Purkinje complex. The dynamics of cardiac behavior can be effectively represented by a nonlinear dynamic model, such as the Van der Pol Oscillator. However, we added an external force described by Bessel functions applied to oscillators with non-ideal characteristics to explore the system's behavior further. Consequently, we analyzed the range of frequencies that alter the dynamic behavior of the system. To diagnose the nonlinear dynamic behavior, we employed classic tools such as the Lyapunov exponent, which established the convergence of trajectories, and the bifurcation diagram that confirms the periodic windows of the system and the phase space. Our findings enabled us to reconstruct an approximation of the Electrocardiogram (ECG) for a set of parameters, owing to the applicability of the mathematical model analyzed in the field of biomedical engineering.
References
-
[1]  |
Pollock, J. D., Murray, I.V., Bordes, S.J., and Makaryus, A.N. (2023), Physiology, Cardiovascular Hemodynamics, StatPearls [Internet], StatPearls Publishing.
|
-
[2]  |
Radhakrishna, R.K.A., Dutt, D.N., and Yeragani, V.K. (2000), Nonlinear measures of heart rate time series: Influence of posture and controlled breathing, Autonomic Neuroscience, 83(3), 148–158.
|
-
[3]  |
Witkowski, F.X., Kavanagh, K.M., Penkoske, P.A., Plonsey, R., Spano, M.L., Ditto, W.L., and Kaplan, D.T. (1995), Evidence for determinism in ventricular fibrillation, Physical Review Letters, 75(6), 1230.
|
-
[4]  |
Gauthier, D.J., Hall, G.M., Oliver, R.A., Dixon-Tulloch, E.G., Wolf, P.D., and Bahar, S. (2002), Progress toward controlling in vivo fibrillating sheep atria using a nonlinear-dynamics-based closed-loop feedback method, Chaos: An Interdisciplinary Journal of Nonlinear Science, 12(3), 952–961.
|
-
[5]  |
Moore, K.L. and Dalley, A.F. (2018), Clinically Oriented Anatomy, Wolters Kluwer India Pvt Ltd.
|
-
[6]  |
Fuller, C., Hoban-Higgins, T.M., Griffin, D.W., and Murakami, D.M. (1994), Influence of gravity on the circadian timing system, Advances in Space Research, 14(8), 399–408.
|
-
[7]  |
Bechtold, D.A., Gibbs, J.E., and Loudon, A.S. (2010), Circadian dysfunction in disease, Trends in Pharmacological Sciences, 31(5), 191-198.
|
-
[8]  |
Karemaker, J.M. and Berecki-Gisolf, J. (2009), 24-h blood pressure in space: The dark side of being an astronaut, Respiratory Physiology \& Neurobiology, 169, S55–S58.
|
-
[9]  |
Monk, T.H., Kennedy, K.S., Rose, L.R., and Linenger, J.M.. (2001), Decreased human circadian pacemaker influence after 100 days in space: A case study, Psychosomatic Medicine, 63(6), 881–885.
|
-
[10]  |
Barr, Y. (2010), Atrial Arrhythmia Summit: Summit Report, [S.l.].
|
-
[11]  |
Dos Santos, A.M., Lopes, S.R., and Viana, R.R.L. (2004), Rhythm synchronization and chaotic modulation of coupled Van der Pol oscillators in a model for the heartbeat, Physica A: Statistical Mechanics and its Applications, 338(3–4), 335–355.
|
-
[12]  |
Hartwig, W.C. (2008), Fundamental Anatomy, Lippincott Williams \& Wilkins.
|
-
[13]  |
Mirvis, D.M. and Goldberger, A.L. (2001), Electrocardiography, Heart Disease, 1, 82–128.
|
-
[14]  |
Burnstock, G., Knight, G.E., and Greig, A.V. (2015), Cardiac purinergic signalling in health and disease, Purinergic Signalling, 11(1), 1–46.
|
-
[15]  |
Felix, J.L.P., Bianchin, R.P., Almeida, A., Balthazar, J.M., Rocha, R.T., and Brasil, R.M. (2016), On energy transfer between vibration modes under frequency-varying excitations for energy harvesting, Applied Mechanics and Materials, 849, 65–75.
|
-
[16]  |
Ribeiro, M.A., Balthazar, J.M., Lenz, W.B., Felix, J.L., Litak, G., and Tusset, A.M. (2022), Fractional dynamical behavior of an elastic magneto piezo oscillator including non-ideal motor excitation, Axioms, 11(12), 667.
|
-
[17]  |
Sano, M. and Sawada, Y. (1985), Measurement of the Lyapunov spectrum from a chaotic time series, Physical Review Letters, 55(10), 1082.
|
-
[18]  |
Grudzinski, K., and Żebrowski, J.J. (2004), Modeling cardiac pacemakers with relaxation oscillators, Physica A: Statistical Mechanics and its Applications, 336(1–2), 153–162.
|
-
[19]  |
Cheffer, A. and Savi, M.A. (2020), Random effects inducing heart pathological dynamics: An approach based on mathematical models, Biosystems, 196, 104177.
|
-
[20]  |
Cheffer, A. and Savi, M.A. (2022), Biochaos in cardiac rhythms, The European Physical Journal Special Topics, 231(5), 833–845.
|
-
[21]  |
Cheffer, A., Savi, M.A., Pereira, T.L., and de Paula, A.S. (2021), Heart rhythm analysis using a nonlinear dynamics perspective, Applied Mathematical Modelling, 96, 152–176.
|
-
[22]  |
Fonkou, R.F. and Savi, M.A. (2023), Heart rhythm analysis using nonlinear oscillators with Duffing-type connections, Fractal and Fractional, 7(8), 592.
|
-
[23]  |
Gois, S.R.F.S.M. and Savi, M.A. (2009), An analysis of heart rhythm dynamics using a three-coupled oscillator model, Chaos, Solitons and Fractals, 41(5), 2553–2565.
|
-
[24]  |
Savi, M.A. (2005), Chaos and order in biomedical rhythms, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 27, 157–169.
|
-
[25]  |
Shampine, L.F. and Reichelt, M.W. (1997), The MATLAB ODE suite, SIAM Journal on Scientific Computing, 18(1), 1–22.
|