Skip Navigation Links
Journal of Vibration Testing and System Dynamics

C. Steve Suh (editor), Pawel Olejnik (editor),

Xianguo Tuo (editor)

Pawel Olejnik (editor)

Lodz University of Technology, Poland

Email: pawel.olejnik@p.lodz.pl

C. Steve Suh (editor)

Texas A&M University, USA

Email: ssuh@tamu.edu

Xiangguo Tuo (editor)

Sichuan University of Science and Engineering, China

Email: tuoxianguo@suse.edu.cn


Chaos in Van Der Pol-like Oscillator under Hysteresis

Journal of Vibration Testing and System Dynamics 9(2) (2025) 123--133 | DOI:10.5890/JVTSD.2025.06.003

Mikhail E. Semenov, Olga O. Reshetova, Peter A. Meleshenko, Sergei V. Borzunov, Olesya I. Kanishcheva

Voronezh State University, Univesitetskaya sq.1, Voronezh, Russia

Download Full Text PDF

 

Abstract

In this article we consider the van der Pol oscillator under hysteresis. In this case there are some peculiarities of the dynamics. We propose a mathematical model that describes the dynamics of a modified van der Pol oscillator with a hysteresis block. In the modified model the quadratic term is replaced by a hysteresis block formalized within the Preisach model. A comparative analysis of the numerical results for the constructed model and the classical van der Pol oscillator is carried out. It is established that chaotic behavior can occur in the modified model unlike the classical case. We also consider a similar model under external excitation. Using the small parameter method, a solution is found, and a comparison of the obtained analytic and numerical results is made. A comparative analysis with the classical forced van der Pol oscillator model is also carried out.

Acknowledgments

This research was supported by the Russian Science Foundation (RSF) grant No. 23-29-00696.

References

  1. [1]  Kuznetsov, A., Stankevich, N., and Turukina, L. (2008), Coupled van der Pol and van der Pol-D\"uffing oscillators: dynamics of phase and computer simulation, Izvestiya VUZ. Applied Nonlinear Dynamics, 16, 101-136.
  2. [2]  Chudzik, A., Perlikowski, P., Stefanski, A., and Kapitaniak, T. (2011), Multistability and rare attractos in van der Pol-D\"uffing oscillator, International Journal of Bifurcation and Chaos, 21, 1907-1912.
  3. [3]  Syta, A. and Litak, G. (2014), Dynamical response of a van derPol-D\"uffing system with an external harmonic excitation and fractional derivative. Awrejcewicz, J. (ed.), Applied Non-Linear Dynamical Systems, 139-150, Springer International Publishing.
  4. [4]  Landa, P. (1996), Nonlinear Oscillations and Waves in Dynamical Systems, Springer Dordrecht.
  5. [5]  Krasnosel'skii, M. and Pokrovskii, A. (1989), Systems with Hysteresis, Springer-Verlag, Berlin, Heidelberg.
  6. [6]  Belhaq, M. and Fahsi, A. (2009), Hysteresis suppression for primary and subharmonic resonances using fast excitation, Nonlinear Dynamics, 275-287.
  7. [7]  Lacarbonara, W. and Vestroni, F. (2012), Nonlinear phenomena in hysteretic systems, Procedia IUTAM, 69-75.
  8. [8]  Carboni, B., Mancini, C., and Lacarbonara, W. (2015), Hysteretic beam model for steel wire ropes hysteresis identification, Structural Nonlinear Dynamics and Diagnosis, 261-282.
  9. [9]  Belhaq, M. and Hamdi, M. (2016), Energy harvesting from quasi-periodic vibrations, Nonlinear Dynamics, 84, 2193-2205.
  10. [10]  Carboni, B. and Lacarbonara, W. (2016), Nonlinear vibration absorber with pinched hysteresis: Theory and experiments, Journal of Engineering Mechanics, 142, 04016023.
  11. [11]  Carboni, B. and Lacarbonara, W. (2016), Nonlinear dynamic characterization of a new hysteretic device: experiments and computations, Nonlinear Dynamics, 83, 23-39.
  12. [12]  Ribeiro, M., Balthazar, J., Lenz, W., Rocha, R., and Tusset, A. (2020), Numerical exploratory analysis of dynamics and control of an atomic force microscopy in tapping mode with fractional order, Shock and Vibration, 2020, 1-17.
  13. [13]  Carboni, W., Lacarbonara, B., Brewick, S., and Masri, P. (2018), Dynamical response identification of a class of nonlinear hysteretic systems, Journal of Intelligent Material Systems and Structures, 29, 2795-2810.
  14. [14]  Rios, L., Rachinskii, D., and Cross, R. (2017), A model of hysteresis arising from social interaction within a firm, Journal of Physics: Conference Series, 811(1), 012011.
  15. [15]  Rios, L., Rachinskii, D., and Cross, R. (2017), On the rationale for hysteresis in economic decisions, Journal of Physics: Conference Series, 811(1), 012012.
  16. [16]  Cross, R. (2014), Unemployment: natural rate epicycles or hysteresis? University of Strathclyde Business School, 1402.
  17. [17]  Cross, R., Namara, H.M., Kalachev, L., and Pokrovskii, A. (2010), Hysteresis in the fundamentals of macroeconomics, Working Papers 1008, University of Strathclyde Business School, Department of Economics, 1008.
  18. [18]  Medvedsky, A.L., Meleshenko, P.A., Nesterov, V.A., Reshetova, O.O., and Semenov, M.E. (2021), Dynamics of hysteretic-related Van-Der-Pol oscillators: the small parameter method, Journal of Computer and Systems Sciences International, 60, 511-529.
  19. [19]  Semenov, M., Reshetova, O., Tolkachev, A., Solovyov, A.M., and Meleshenko, P. (2019), Modeling oscillations under hysteretic conditions: From simple oscillator to discrete sine-Gordon model, in Topics in Nonlinear Mechanics and Physics, Singapore: Springer, 228, 229-253.
  20. [20]  Semenov, M., Solovyov, A., and Meleshenko, P. (2021), Stabilization of coupled inverted pendula: From discrete to continuous case, Journal of Vibration and Control, 27, 43-56.
  21. [21]  Medvedskii, A.L., Meleshenko, P.A., Nesterov, V.A., Reshetova, O.O., Semenov, M.E., and Solovyov, A.M. (2020), Unstable oscillating systems with hysteresis: problems of stabilization and control, Journal of Computer and Systems Sciences International, 59, 533-556.
  22. [22]  Semenov, M., Solovyov, A.M., Meleshenko, P., and Reshetova, O.O. (2020), Efficiency of hysteretic damper in oscillating systems, Mathematical Modelling of Natural Phenomena, 15, 43.
  23. [23]  Borzunov, S.V., Semenov, M.E., Sel'vesyuk, N.I., and Meleshenko, P. (2020), Hysteretic converters with stochastic parameters, Mathematical Models and Computer Simulations, 12(2020), 164-175.
  24. [24]  Semenov, M., Borzunov, S., Meleshenko, P., and Sel'vesyuk, N. (2024), The preisach model of hysteresis: fundamentals and applications, Physica Scripta, 99, 062008.
  25. [25]  Radons, G. and Zienert, A. (2013), Nonlinear dynamics of complex hysteretic systems: Oscillator in a magnetic field, European Physical Journal: Special Topics, 222, 1675-1684.
  26. [26]  Bernardini, D. and Litak, G. (2016), An overview of $0-1$ test for chaos, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 38, 1433-1450.
  27. [27]  Westin, M., Balthazar, J., and da~Silva, R. (2021), On comparison between $0-1$ test for chaos and attractor reconstruction of an aeroelastic system, Journal of Vibration Engineering $\&$ Technologies, 9, 303-312.
  28. [28]  Benettin, G., Galgani, L., Giorgilli, A., and Strelcyn, J.M. (1980), Lyapunov characteristic exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. part 1: Theory, Meccanica, 15, 9-20.
  29. [29]  Benettin, G., Galgani, L., Giorgilli, A., and Strelcyn, J.M. (1980), Lyapunov characteristic exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. part 2: Numerical application, Meccanica, 15, 21-30.
  30. [30]  Semenov, M., Borzunov, S., and Meleshenko, P. (2022), A new way to compute the Lyapunov characteristic exponents for non-smooth and discontinues dynamical systems, Nonlinear Dynamics, 109, 1805-1821.
  31. [31]  Balanov, Z., Krawcewicz, W., Rachinskii, D., and Zhezherun, A. (2012), Hopf bifurcation in symmetric networks of coupled oscillators with hysteresis, Journal of Dynamics and Differential Equations, 24, 713-759.
  32. [32]  Semenov, M., Borzunov, S., and Meleshenko, P. (2020), Stochastic Preisach operator: definition within the design approach, Nonlinear Dynamics, 101, 2599-2614.
  33. [33]  Semenov, M.E., Reshetova, O.O., Borzunov, S.V., and Meleshenko, P. (2021), Self-oscillations in a system with hysteresis: the small parameter approach, European Physical Journal: Special Topics, 230, 3565-3571.