Skip Navigation Links
Journal of Vibration Testing and System Dynamics

C. Steve Suh (editor), Pawel Olejnik (editor),

Xianguo Tuo (editor)

Pawel Olejnik (editor)

Lodz University of Technology, Poland

Email: pawel.olejnik@p.lodz.pl

C. Steve Suh (editor)

Texas A&M University, USA

Email: ssuh@tamu.edu

Xiangguo Tuo (editor)

Sichuan University of Science and Engineering, China

Email: tuoxianguo@suse.edu.cn


Results on $psi$-Hilfer Implicit Fractional Boundary Value Problem with Impulses

Journal of Vibration Testing and System Dynamics 9(1) (2025) 63--75 | DOI:10.5890/JVTSD.2025.03.004

M. Latha Maheswari, K. S. Keerthana Shri

Department of Mathematics, PSG College of Arts & Science, Coimbatore, Tamil Nadu, India

Download Full Text PDF

 

Abstract

The $\psi$-Hilfer implicit fractional boundary value problem with impulses is investigated in this paper. The qualitative analysis is carried out by means of Krasnosel'skii's fixed point theorem and the Banach contraction principle. An example is provided to help interpret our results, which are also analysed graphically.

References

  1. [1]  Atanackovic, T.M., Pilipovic, S., Stankovic, B., and Zorica, D. (2014), Fractional Calculus with Applications in Mechanics: Wave Propagation, Impact and Variational Principles, John Wiley \& Sons.
  2. [2]  Hilfer, R. (editor) (2000), Applications of Fractional Calculus in Physics, World scientific.
  3. [3] Kilbas, A.A., Srivastava, H.M., and Trujillo, J. (2006), Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 207.
  4. [4]  Meral, F.C., Royston, T.J., and Magin, R. (2010), Fractional calculus in viscoelasticity: an experimental study, Communications in Nonlinear Science and Numerical Simulation, 15(4), 939-945.
  5. [5]  Mouffak, B. and Seba, D. (2009), Impulsive fractional differential equations in Banach spaces, Electronic Journal of Qualitative Theory of Differential Equations, 2009(8), 1-14.
  6. [6]  Shah, S.O., Zada, A., and Hamza, A.E. (2019), Stability analysis of the first order non-linear impulsive time varying delay dynamic system on time scales, Qualitative Theory of Dynamical Systems, 18, 825-840.
  7. [7]  Xu, L.G., Chu, X.Y., and Hu, H.X. (2020), Exponential ultimate boundedness of non-autonomous fractional differential systems with time delay and impulses, Applied Mathematics Letters, 99, 106000.
  8. [8]  Awadalla, M., Noupoue, Y.Y.Y., Asbeh, K.A., and Ghiloufi, N. (2022), Modeling drug concentration level in blood using fractional differential equation based on Psi-Caputo derivative, Journal of Mathematics, 2022, 9006361.
  9. [9]  Fu, H., Wu, G.C., Yang, G., and Huang, L.L. (2021), Continuous time random walk to a general fractional Fokker–Planck equation on fractal media, The European Physical Journal Special Topics, 230(21), 3927-3933.
  10. [10]  da C. Sousa, J.V. and de Oliveira, E.C. (2018), On the $\psi$-Hilfer fractional derivative, Communications in Nonlinear Sience and Numerical Simulation, 60, 72–91.
  11. [11]  Ahmed, I., Kumam, P., Abubakar, J., Borisut, P., and Sitthithakerngkiet, K. (2020), Solutions for impulsive fractional pantograph differential equation via generalized anti-periodic boundary condition, Advances in Difference Equations, 2020(1), 477.
  12. [12]  Almalahi, M.A. and Panchal, S.K. (2021), Some properties of implicit impulsive coupled system via $\phi$-Hilfer fractional operator, Boundary Value Problems, 2021(1), 1-22.
  13. [13] Faree, T.A. and Panchal, S.K. (2021), Existence of solution for impulsive fractional differential equations via topological degree method, Journal of the Korean Society for Industrial and Applied Mathematics, 25(1), 16-25.
  14. [14]  Kharade, J.P. and Kucche, K.D. (2020), On the impulsive implicit $\psi$‐Hilfer fractional differential equations with delay, Mathematical Methods in the Applied Sciences, 43(4) 1938-1952.
  15. [15]  Ullah, A., Shah, K., Abdeljawad, T., Khan, R.A., and Mahariq, I. (2020), Study of impulsive fractional differential equation under Robin boundary conditions by topological degree method, Boundary Value Problems, 2020(1), 1-17.
  16. [16]  Beddani, M., Beddani, H., and Feckan, M. (2023), Qualitative study for impulsive pantograph fractional integro-differential equation via $\psi$-Hilfer derivative, Miskolc Mathematical Notes, 24(2), 635-651.
  17. [17]  Jarad, F. and Abdeljawad, T. (2020), Generalized fractional derivatives and Laplace transform, Discrete and Continuous Dynamical Systems - Series S, 13(3), 709–722.
  18. [18]  Wu, G.C., Kong, H., Luo, M., Fu, H., and Huang, L.L. (2022), Unified predictor–corrector method for fractional differential equations with general kernel functions, Fractional Calculus and Applied Analysis, 25(2), 648-667.
  19. [19]  Sudsutad, W., Thaiprayoon, C., and Ntouyas, S.K. (2021), Existence and stability results for $\psi$-Hilfer fractional integrodifferential equation with mixed nonlocal boundary conditions, AIMS Mathematics, 6(4), 4119–4141.
  20. [20]  Andrzej, G. and Dugundji, J. (2003), Fixed Point Theory, 14, New York: Springer.
  21. [21]  Krasnosel'skiı, M.A. (1955), Two remarks on the method of successive approximations, Uspekhi Matematicheskikh Nauk, 10, 123-127.
  22. [22]  Su, X.W., and Zhang, S.Q. (2011), Unbounded solutions to a boundary value problem of fractional order on the half-line, Computers $\&$ Mathematics with Applications, 61(4), 1079-1087.
  23. [23]  Green, J.W., and Valentine, F.A. (1961), On the Arzela-Ascoli theorem, Mathematics Magazine, 34(4), 199-202.