Skip Navigation Links
Journal of Vibration Testing and System Dynamics

C. Steve Suh (editor), Pawel Olejnik (editor),

Xianguo Tuo (editor)

Pawel Olejnik (editor)

Lodz University of Technology, Poland

Email: pawel.olejnik@p.lodz.pl

C. Steve Suh (editor)

Texas A&M University, USA

Email: ssuh@tamu.edu

Xiangguo Tuo (editor)

Sichuan University of Science and Engineering, China

Email: tuoxianguo@suse.edu.cn


A Novel Chaotic System with Hyperbolic Tangent Terms and Its Application to Random Bit Generator and Image Encryption

Journal of Vibration Testing and System Dynamics 8(3) (2024) 341--353 | DOI:10.5890/JVTSD.2024.09.006

Savvas Kosmidis$^{1}$, Christos Volos$^{1}$, Lazaros Moysis$^{1,2}$, Efthymia Meletlidou$^{1}$

$^{1}$ Physics Department, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece

$^{2}$ Department of Mechanical Engineering, University of Western Macedonia, GR-50100 Kozani, Greece

Download Full Text PDF

 

Abstract

In this work the study and use of a continuous chaotic dynamical system with no equilibria is presented. In more details the proposed 3-D system has two hyperbolic tangent terms and it has both self excited and hidden attractors. The behavior of the system is studied numerically through phase portraits, bifurcation diagrams and Lyapunov exponents. Also, the design of a random bit generator, based on the chaotic system, is presented. The randomness of the generated bitstream is tested through NIST 800-22. Finally, the random bit generator is used in an image encryption application.~The encryption scheme is resistant to various attacks, as it is thoroughly shown.

References

  1. [1]  Lorenz, E.N. (1963), Deterministic nonperiodic flow, Journal of Atmospheric Sciences, 20(2), 130-141.
  2. [2]  R\"{o}ssler, O.E. (1976), An equation for continuous chaos, Physics Letters A, 57(5), 397-398.
  3. [3]  Van der Pol, B. (1920), Theory of the amplitude of frfeE. Forced triode vibrations, Radio Review, 1, 701-710.
  4. [4]  Wiggins, G. and Global, S. (1988), Bifurcation and chaos: Analytical methods.
  5. [5]  Leonov, G.A. and Kuznetsov, N.V. (2013), Hidden attractors in dynamical systems. From hidden oscillations in Hilbert--Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits, International Journal of Bifurcation and Chaos, 23(01), 1330002.
  6. [6]  Leonov, G.A., Kuznetsov, N.V., and Mokaev, T.N. (2015), Homoclinic orbits, and self-excited and hidden attractors in a Lorenz like system describing convective fluid motion, The European Physical Journal Special Topics, 224(8), 1421-1458.
  7. [7]  Wang, Z., Cang, S., Ochola, E.O., and Sun, Y. (2012), A hyperchaotic system without equilibrium, Nonlinear Dynamics, 69(1), 531-537.
  8. [8]  Jafari, S., Sprott, J.C., and Golpayegani, S.M.R.H. (2013), Elementary quadratic chaotic flows with no equilibria, Physics Let ters A, 377(9), 699-702.
  9. [9]  Molaie, M., Jafari, S., Sprott, J.C., and Golpayegani, S.M.R.H. (2013), Simple chaotic flows with one stable equilibrium, International Journal of Bifurcation and Chaos, 23(11), 1350188.
  10. [10]  Jafari, S. and Sprott, J.C. (2013), Simple chaotic flows with a line equilibrium, Chaos, Solitons $\&$ Fractals, 57, 79-84.
  11. [11]  Li, J. (2003), Hilbert's 16th problem and bifurcations of planar polynomial vector fields, International Journal of Bifurcation and Chaos, 13(01), 47-106.
  12. [12]  Pikovski, A.S., Rabinovich, M.I., and Trakhtengerts, V.Y. (1978), Appearance of chaos at decay saturation of parametric instability, Soviet Physics, JETP, 47, 715-719.
  13. [13]  Glukhovskii, A.B. and Dolzhanskii, F.V. (1980), Academy of sciences, USSR, Izvestiya, Atmospheric and Oceanic Physics, 16, 311.
  14. [14]  Leonov, G.A., Kuznetsov, N.V., and Vagaitsev, V.I. (2012), Hidden attractor in smooth Chua systems, Physica D: Nonlinear Phenomena, 241(18), 1482-1486.
  15. [15]  Sommerfeld, A. (1902), Beitr\"{age zum dynamischen Ausbau der Festigkeitslehre}, wydawca nieznany.
  16. [16]  Posch, H.A., Hoover, W.G., and Vesely, F.J. (1986), Canonical dynamics of the Nos{e} oscillator: Stability, order, and chaos, Physical Review A, 33(6), 4253.
  17. [17]  Moysis, L., Tutueva, A., Volos, C., Butusov, D., Munoz-Pacheco, J.M., and Nistazakis, H. (2020), A two-parameter modified logistic map and its application to random bit generation, Symmetry, 12(5), 829.
  18. [18]  Akgul, A., Gurevin, B., Pehlivan, I., Yildiz, M., Kutlu, M.C., and Guleryuz, E. (2021), Development of micro computer based mobile random number generator with an encryption application, Integration, 81, 1-16.
  19. [19]  Rukhin, A., Soto, J., Nechvatal, J., Smid, M., and Barker, E. (2001), A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications, Booz-allen and hamilton inc mclean va.
  20. [20]  Wolf, A., Swift, J.B., Swinney, H.L., and Vastano, J.A. (1985), Determining Lyapunov exponents from a time series, Physica D: Nonlinear Phenomena, 16(3), 285-317.
  21. [21]  Dawson, S.P., Grebogi, C., Yorke, J.A., Kan, I., and Ko\c{c}ak, H. (1992), Antimonotonicity: inevitable reversals of period-doubling cascades, Physics Letters A, 162(3), 249-254.
  22. [22]  Moafimadani, S.S., Chen, Y., and Tang, C. (2019), A new algorithm for medical color images encryption using chaotic systems, Entropy, 21(6), 577.
  23. [23]  Wu, Y., Noonan, J.P., and Agaian, S. (2011), NPCR and UACI randomness tests for image encryption, Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Telecommunications (JSAT), 1(2), 31-38.
  24. [24]  Alvarez, G. and Li, S. (2006), Some basic cryptographic requirements for chaos-based cryptosystems, International Journal of Bifurcation and Chaos, 16(08), 2129-2151.