Skip Navigation Links
Journal of Vibration Testing and System Dynamics

C. Steve Suh (editor), Pawel Olejnik (editor),

Xianguo Tuo (editor)

Pawel Olejnik (editor)

Lodz University of Technology, Poland

Email: pawel.olejnik@p.lodz.pl

C. Steve Suh (editor)

Texas A&M University, USA

Email: ssuh@tamu.edu

Xiangguo Tuo (editor)

Sichuan University of Science and Engineering, China

Email: tuoxianguo@suse.edu.cn


Analysis of the Dynamical Behavior of a Modified Cubic-Map with a Discrete Memristor

Journal of Vibration Testing and System Dynamics 8(2) (2024) 195--205 | DOI:10.5890/JVTSD.2024.06.004

Laskaridis Lazaros, Christos Volos, Ioannis Stouboulos

Laboratory of Nonlinear Systems, Circuits & Complexity (LaNSCom), Physics Department, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece

Download Full Text PDF

 

Abstract

In this work, a memristor-based modified Cubic mapping model is presented by coupling a discrete memristance function with a modified Cubic map. This model is based on the memristor, which was discovered by Chua in 1971, as the fourth fundamental electrical component in addition to resistance, capacitance, and inductance. To investigate system's dynamical behavior a set of nonlinear tools has been used, such as bifurcation and maximal Lyapunov exponent diagrams as well as phase portraits. Interesting phenomena related to nonlinear theory have been observed such as, hyperchaotic behavior, regular (periodic and quasiperiodic) and chaotic orbits, as well as route to chaos through the mechanism of period doubling and crisis phenomena.

References

  1. [1]  Chua, L. (1971), Memristor-the missing circuit element, IEEE Transactions on Circuit Theory, 18, 507-519.
  2. [2]  Tetzlaff, R. (2013), Memristors and Memristive Systems, Springer Science \& Business Media.
  3. [3]  Parajuli, S., Budhathoki, R.K., and Kim, H. (2019), Nonvolatile memory cell based on memristor emulator, arXiv preprint arXiv:1905.04864.
  4. [4]  Chua, L.O. and Kang, S.M. (1976), Memristive devices and systems, Proceedings of the IEEE, 64, 209-223.
  5. [5]  Strukov, D.B., Snider, G.S., Stewart, D.R., and Williams, R.S. (2008), The missing memristor found, Nature, 453, 80-83.
  6. [6]  Minati, L., Gambuzza, L., Thio, W., Sprott, J., and Frasca, M. (2020), A chaotic circuit based on a physical memristor, Chaos, Solitons $\&$ Fractals, 138, 109990.
  7. [7]  Kumar, S., Strachan, J.P., and Williams, R.S. (2017), Chaotic dynamics in nanoscale nbo 2 mott memristors for analogue computing, Nature, 548, 318-321.
  8. [8]  Buscarino, A., Fortuna, L., Frasca, M., and ValentinaGambuzza, L. (2012), A chaotic circuit based on Hewlett-Packard memristor, Chaos: An Interdisciplinary Journal of Nonlinear Science, 22, 023136.
  9. [9]  Peng, Y., Sun, K., and He, S. (2020), A discrete memristor model and its application in h{e}non map, Chaos, Solitons $\&$ Fractals, 137, 109873.
  10. [10]  Ma, M., Yang, Y., Qiu, Z., Peng, Y., Sun, Y., Li, Z., and Wang, M. (2022), A locally active discrete memristor model and its application in a hyperchaotic map, Nonlinear Dynamics, 107(3), 2935-2949.
  11. [11]  Li, G., Zhong, H., Xu, W., and Xu, X. (2022), Two modified chaotic maps based on discrete memristor model, Symmetry, 14, 800.
  12. [12]  Bao, B.-C., Li, H., Wu, H., Zhang, X., and Chen, M. (2020), Hyperchaos in a second-order discrete memristor-based map model, Electronics Letters, 56, 769-770.
  13. [13]  Bao, B., Rong, K., Li, H., Li, K., Hua, Z., and Zhang, X. (2021) Memristor-coupled logistic hyperchaotic map, IEEE Transactions on Circuits and Systems II: Express Briefs, 68, 2992-2996.
  14. [14]  Peng, G. and Min, F. (2017), Multistability analysis, circuit implementations and application in image encryption of a novel memristive chaotic circuit, Nonlinear Dynamics, 90, 1607-1625.
  15. [15]  Peng, Y., He, S., and Sun, K. (2021), Chaos in the discrete memristor-based system with fractional-order difference, Results in Physics, 24, 104106.
  16. [16]  Liu, T., Mou, J., Xiong, L., Han, X., Yan, H., and Cao, Y. (2021), Hyperchaotic maps of a discrete memristor coupled to trigonometric function, Physica Scripta, 96, 125242.
  17. [17]  Garc{\i}a-Mart{\i}nez, M., Campos-Cant{o}n, I., Campos-Cant{o}n, E., and {\v{C}}elikovsk{\`y}, S. (2013), Difference map and its electronic circuit realization, Nonlinear Dynamics, 74, 819-830.
  18. [18]  Garc{\i}a-Grimaldo, C. and Campos, E. (2021), Chaotic features of a class of discrete maps without fixed points, International Journal of Bifurcation and Chaos, 31, 2150200.
  19. [19]  Wang, X. and Chen, X. (2021), An image encryption algorithm based on dynamic row scrambling and zigzag transformation, Chaos, Solitons $\&$ Fractals, 147, 110962.
  20. [20]  Trujillo-Toledo, D., L{o}pez-Bonilla, O., Garc{\i}a-Guerrero, E., Tlelo-Cuautle, E., L{o}pez-Mancilla, D., Guill{e}n-Fern{a}ndez, O., and Inzunza-Gonz{a}lez, E. (2021), Real-time {RGB} image encryption for iot applications using enhanced sequences from chaotic maps, Chaos, Solitons $\&$ Fractals, 153, 111506.
  21. [21]  Wolf, A., Swift, J.B., Swinney, H.L., and Vastano, J.A. (1985), Determining Lyapunov exponents from a time series, Physica D: Nonlinear Phenomena, 16, 285-317.
  22. [22]  Sandri, M. (1996), Numerical calculation of lyapunov exponents, Mathematica Journal, 6, 78-84.
  23. [23]  Sayama, H. (2015), Introduction to the modeling and analysis of complex systems, Open Suny Textbooks.
  24. [24]  Bao, H., Hua, Z., Li, H., Chen, M., and Bao, B. (2021), Discrete memristor hyperchaotic maps, IEEE Transactions on Circuits and Systems I: Regular Papers, 68, 4534-4544.
  25. [25]  Chua, L.O. (2014), If it's pinched it's a memristor, Semiconductor Science and Technology, 29, 1-42.
  26. [26]  Li, H., Hua, Z., Bao, H., Zhu, L., Chen, M., and Bao, B. (2020), Two-dimensional memristive hyperchaotic maps and application in secure communication, IEEE transactions on Industrial Electronics, 68, 9931-9940.
  27. [27]  Testa, J. and Held, G. (1983), Study of a one-dimensional map with multiple basins, Physical Review A, 28, 3085.