Skip Navigation Links
Journal of Vibration Testing and System Dynamics

C. Steve Suh (editor), Pawel Olejnik (editor),

Xianguo Tuo (editor)

Pawel Olejnik (editor)

Lodz University of Technology, Poland

Email: pawel.olejnik@p.lodz.pl

C. Steve Suh (editor)

Texas A&M University, USA

Email: ssuh@tamu.edu

Xiangguo Tuo (editor)

Sichuan University of Science and Engineering, China

Email: tuoxianguo@suse.edu.cn


Energy Harvesting of a Unimorph-Piezoelectric Portal Frame Using Component Mode Synthesis

Journal of Vibration Testing and System Dynamics 8(1) (2024) 47--66 | DOI:10.5890/JVTSD.2024.03.004

Nyesunthi Apiwattanalunggarn

Department of Mechanical Engineering, Kasetsart University, 50 Phaholyothin Road, Jatujak, Bangkok 10900,

Thailand

Download Full Text PDF

 

Abstract

This paper describes a methodology for modeling a unimorph-piezoelectric portal frame based on electromechanical energy formulation of the Euler-Bernoulli beam with axial deformations, the fixed-interface component mode synthesis by Craig and Bampton, and the Rayleigh-Ritz method. An assembled model obtained from this approach is the reduced-order model in terms of generalized modal coordinates without dealing with finite-element model during modeling formulation. The operating frequency of the portal-frame energy harvester can be reduced significantly from a cantilevered-piezoelectric energy harvester. The total-voltage output of the portal frame is the sum of voltage outputs from each substructure due to in-phase voltage outputs of each substructure. The presented approach can be used systematically to study an internal resonance of the portal frame when both piezoelectric-material nonlinearity and geometric nonlinearity are included.

References

  1. [1]  Erturk, A. and Inman, D.J. (2011), Piezoelectric energy harvesting, John Wiley \& Sons, Inc..
  2. [2]  Sezer, N. and Ko\c{c}, M. (2021), A comprehensive review on the state-of-the-art of piezoelectric energy harvesting, Nano Energy, 80, 1-25, 105567.
  3. [3]  Iliuk, I., Balthazar, J.M., Tusset, A.M., Piqueira, J.R.C., Rodrigues de Pontes, B., Felix, J.L.P., and Bueno, A.M. (2013), A non-ideal portal frame energy harvester controlled using a pendulum, The European Physical Journal Special Topics, 222, 1575-1586.
  4. [4]  Iliuk, I., Balthazar, J.M., Tusset, A.M., Piqueira, J.R.C., Rodrigues de Pontes, B., Felix, J.L.P., and Bueno, A.M. (2014), Application of passive control to energy harvester efficiency using a nonideal portal frame structural support system, Journal of Intelligent Material Systems and Structures, 25, 417-429.
  5. [5]  Rocha, R.T., Balthazar, J.M., Tusset, A.M., Piccirillo, V., and Feliz, J.L.P. (2017), Nonlinear piezoelectric vibration energy harvesting from a portal frame with two-to-one internal resonance, Meccanica, 52, 2583-2602.
  6. [6]  Lenz, W.B., Ribeiro, M.A., Rocha, R.T., Balthazar, J.M., and Tusset, A.M. (2021), Numerical simulations and control of offshore energy harvesting using piezoelectric materials in a portal frame structure, Shock and Vibration, 2021, 1-11.
  7. [7]  Rocha, R.T., Alcheikh, N., Khan, F., and Younis, M.I. (2020), Dynamics characterization of a U-shaped micro-resonator portal frame, Journal of Microelectromechanical Systems, 29, 1362-1371.
  8. [8]  Rocha, R.T. and Younis, M.I. (2022), Nonlinear mode saturation in a U-shaped micro-resonator, Scientific Reports, 12(1), 1-9.
  9. [9]  Meirovitch, L. (1997), Principles and techniques of vibrations, Prentice-Hall International, Inc..
  10. [10]  Apiwattanalunggarn, P.(N.), Shaw, S.W., and Pierre, C. (2005), Component mode synthesis using nonlinear normal modes, Nonlinear Dynamics, 41, 17-46.
  11. [11]  Craig, R.R. and Bampton, M.C.C. (1968), Coupling of Substructures for Dynamic Analyses, AIAA Journal, 6(7), 1313-1319.
  12. [12]  Reddy, J.N. (1993), An Introduction to The Finite Element Method, McGraw-Hill, New York.
  13. [13]  Rao, S.S. (2011), Mechanical Vibrations, Prentice Hall.