Skip Navigation Links
Journal of Vibration Testing and System Dynamics

C. Steve Suh (editor), Pawel Olejnik (editor),

Xianguo Tuo (editor)

Pawel Olejnik (editor)

Lodz University of Technology, Poland

Email: pawel.olejnik@p.lodz.pl

C. Steve Suh (editor)

Texas A&M University, USA

Email: ssuh@tamu.edu

Xiangguo Tuo (editor)

Sichuan University of Science and Engineering, China

Email: tuoxianguo@suse.edu.cn


On the Direct Electromagnetic Scattering Problem by an Impenetrable Partially Coated Obstacle Embedded in a Chiral Environment

Journal of Vibration Testing and System Dynamics 7(3) (2023) 285--306 | DOI:10.5890/JVTSD.2023.09.004

K. H. Leem$^1$, G. Pelekanos$^1$, V. Sevroglou$^2$

$^1$ Department of Mathematics and Statistics, Southern Illinois University Edwardsville, Edwardsville, IL 62026, USA,

$^2$ Department of Statistics and Insurance Science, University of Piraeus, GR 15834, Piraeus, Greece

Download Full Text PDF

 

Abstract

In this paper the direct scattering problem by an impenetrable obstacle embedded in a given homogeneous background chiral medium is studied. Incident electromagnetic waves are propagated in a homogeneous chiral environment. We assume that the chirality measures of the background and exterior medium are both distinct positive constants. Our scatterer has a smooth boundary that is divided into two open disjoint parts for which an impedance boundary condition on the one part of the boundary, and a perfectly conducting boundary condition on the other part, are satisfied. Uniqueness results for the above scattering problem, using the Bohren decomposition into Beltrami fields, are established. Consequently, we introduce a \emph{chiral Calderon} operator, for which its basic properties are proved, and its connection with the existence of our problems solution is presented. The well-posedness of our problem is completed by proving the continuous dependence of the solution on the boundary data. Finally, some discussion and conclusions are given.

References

  1. [1]  Lakhtakia, A., Varadan, V.K., and Varadan, V.V. (1989), Time-harmonic Electromagnetic Fields in Chiral Media, Lecture Notes in Physics, Springer-Berlin.
  2. [2]  Lakhtakia, A. (1994), Beltrami Fields in Chiral Media, World Scientific, Singapore.
  3. [3]  Roach, G.F., Stratis, I.G., and Yannacopoulos, A.N. (2012), Mathematical Analysis of Deterministic and Stochastic Problems in Complex Media Electromagnetics, Princeton Series in Applied Mathematics, Princeton University Press, New Jersey.
  4. [4]  Athanasiadis, C.E., Costakis, G., and Stratis, I.G. (2000), Electromagnetic scattering by a homogeneous chiral obstacle in a chiral environment, IMA Journal of Applied Mathematics, 64(3), 245-258.
  5. [5]  Lakhtakia, A., Varadan, V.K., and Varadan, V.V. (1991), Surface integral equations for scattering by PEC scatterers in isotropic chiral media, International Journal of Engineering Science, 29(2), 179-185.
  6. [6]  Lindell, I.V., Sihvola, A.H., Tretyakov, S.A., and Viitanen, A.J. (1994), Electromagnetic Waves in Chiral and Bi-isotropic Media, Artech House, Boston.
  7. [7]  Athanasiadis, C.E., Martin, P.A., and Stratis, I.G. (1999), Electromagnetic scattering by a homogeneous chiral obstacle: boundary integral equations and low-chirality approximations, SIAM Journal on Applied Mathematics, 59(5), 1745-1762.
  8. [8]  Athanasiadis, C.E., Costakis, G., and Stratis, I.G. (2000), On some properties of Beltrami fields in chiral media, Reports on Mathematical Physics, 45(2), 257-270.
  9. [9]  Ammari, H. and Nedelec, J.C. (1998), Time-harmonic electromagnetic fields in thin chiral curved layers, SIAM Journal on Mathematical Analysis, 29(2), 395-423.
  10. [10]  Ammari, H., Hamdache, K., and Nedelec, J.C. (1999), Chirality in the Maxwell equations by the dipole approximation method, SIAM Journal on Applied Mathematics, 59(6), 2045-2059.
  11. [11]  Athanasiadis, C.E. and Kardasi, E. (2005), Beltrami Herglotz functions for electromagnetic scattering, Applicable Analysis, 84(2), 145-163.
  12. [12]  Tai, C.T. (1994), Dyadic Green Functions in Electromagnetic Theory, 2nd edition, IEEE Press, New York.
  13. [13]  Colton, D. and Kress, R. (1983), Integral Equation Methods in Scattering Theory, Wiley.
  14. [14] Stephan, E.P. (1987), Boundary integral equations for screen problems in $\mathbb{R}^3$, Integral Eqns Operator Theory, 10, 236-257.
  15. [15]  Cakoni, F. and and Colton, D. (2005), Qualitative Methods in Inverse Electromagnetic Scattering Theory, Springer-Verlag, New York.
  16. [16]  Athanasiadis, C.E. (2005), On the far field patterns for electromagnetic scattering by a chiral obstacle in chiral environment, Journal of Mathematical Analysis and Applications, 309(2), 517-533.
  17. [17]  Cakoni, F., Colton, D., and Darringrand, E. (2003), A Uniqueness theorem for an inverse electromagnetic scattering problem in homogeneous anisotropic media, Proceedings of the Edinburgh Mathematical Society, 46(2), 293-314.
  18. [18]  Cakoni, F. and Darringrand, E. (2005), The inverse electromagnetic scattering problem for a mixed boundary value problem for screens, Journal of Computational and Applied Mathematics, 174(2), 251-269.
  19. [19]  Cakoni, F. and Haddar, H, (2007), Identification of partially coated anisotropic buried objects using electromagnetic Cauchy data, The Journal of Integral Equations and Applications, 19, 359--389.
  20. [20]  Collino, F., Fares, M. and Haddar, H. (2003), Numerical and analytical studies of the linear sampling method in electromagnetic scattering problems, Inverse Problems, 19, 1279-1299.
  21. [21]  Colton, D. and Kirsch, A. (1997), A simple method for solving inverse scattering problems in the resonance region, Inverse Problems, 12, 383-393.
  22. [22]  Colton, D., Pianna, M., and Potthast, R. (1997), A simple method using Morozov's discrepancy principle for solving inverse scattering problem, Inverse Problems, 13, 1477-1493.
  23. [23]  Kirsch, A. and Grinberg, N. (2008), The Factorization Method for Inverse Problems, Oxford University Press, Oxford.
  24. [24]  Athanasiadis, C.E., Sevroglou, V.I., and Skourogiannis, K.I. (2012), The direct electromagnetic scattering problem by a mixed impedance screen in chiral media, Applicable Analysis, 91(11), 1-11.
  25. [25]  Athanasiadis, C.E., Sevroglou, V., and Skourogiannis, K.I. (2015), The inverse electromagnetic scattering problem by a mixed impedance screen in chiral media, Inverse Problems in Image, 9(4), 951-970.
  26. [26]  Athanasiadis, C.E., Natrosvili, D., Sevroglou, V., and Stratis, I.G. (2011), A boundary integral equations approach for direct mixed impedance problems in elasticity, The Journal of Integral Equations and Applications, 23(2), 183-222.
  27. [27]  McLean, W. (2003), Strongly Elliptic Systems and Boundary Integral equations, Cambridge University Press, Cambridge.
  28. [28]  Monk, P. (2003), Finite Element Methods for Maxwell's Equations, Clarendon Press, Oxford.
  29. [29]  Colton, D. and Kress, R. (1992), Inverse Acoustic and Electromagnetic Scattering Theory, Springer-Verlag. % %
  30. [30]  Ammari, H. and Nedelec, J.C. (1998), Time-harmonic electromagnetic fields in thin chiral curved layers, SIAM Journal on Mathematical Analysis, 29(2), 395-423. % %
  31. [31]  Ammari, H., Hamdache, K., and Nedelec, J.C. (1999), Chirality in the Maxwell equations by the dipole approximation method, SIAM Journal on Applied Mathematics, 59(6), 2045-2059. % % %
  32. [32]  Athanasiadis, C.E., Martin, P.A., and Stratis, I.G. (1999), Electromagnetic scattering by a homogeneous chiral obstacle: boundary integral equations and low-chirality approximations, SIAM Journal on Applied Mathematics, 59(5), 1745-1762. % % % % %
  33. [33]  Athanasiadis, C.E., Costakis, G., and Stratis, I.G. (2000), %Electromagnetic scattering by a homogeneous chiral %obstacle in a chiral environment, IMA Journal of Applied Mathematics, 64(3), 245-258. % % %
  34. [34]  Athanasiadis, C.E., Costakis, G., and Stratis, I.G. (2000), % On some properties of Beltrami fields in chiral media, % Reports on Mathematical Physics, 45(2), 257-270. % % % %
  35. [35]  Athanasiadis, C.E. (2005), On the far field patterns for electromagnetic scattering by a chiral obstacle in chiral environment, %Journal of Mathematical Analysis and Applications, 309(2), 517-533. % % %
  36. [36]  Athanasiadis, C.E. and Kardasi, E. (2005), %Beltrami Herglotz functions for electromagnetic scattering, %Applicable Analysis, 84(2), 145-163. % %
  37. [37]  Athanasiadis, C.E., Natrosvili, D., Sevroglou, V., and Stratis, I.G. (2011), %A boundary integral equations approach for direct mixed impedance %problems in elasticity, The Journal of Integral Equations and Applications, 23(2), 183-222. % %
  38. [38]  Athanasiadis, C.E., Sevroglou, V.I., and Skourogiannis, K.I. (2012), The direct electromagnetic scattering problem by a mixed impedance screen %in chiral media, Applicable Analysis, 91(11), 1-11. % % %
  39. [39]  Athanasiadis, C.E., Sevroglou, V., and Skourogiannis, K.I. (2015), The inverse electromagnetic scattering problem by a mixed impedance screen %in chiral media, Inverse Problems in Image, 9(4), 951-970. % %
  40. [40]  Cakoni, F., Colton, D., and Darringrand, E. (2003), A Uniqueness theorem for an inverse electromagnetic scattering problem in homogeneous anisotropic media, %Proceedings of the Edinburgh Mathematical Society, 46(2), 293-314. % % %
  41. [41]  Cakoni, F. and Colton, D. (2003), The inverse electromagnetic scattering problem for screens, Inverse Problems, 19, 627-642. % %
  42. [42]  Cakoni, F. and and Colton, D. (2005), Qualitative Methods in Inverse Electromagnetic Scattering Theory, Springer-Verlag, New York. % %
  43. [43]  Cakoni, F. and Darringrand, E. (2005), The inverse electromagnetic scattering problem for a mixed boundary value problem for screens, %Journal of Computational and Applied Mathematics, 174(2), 251-269. % %
  44. [44]  Cakoni, F. and Haddar, H, (2007), Identification of partially coated anisotropic buried objects using electromagnetic Cauchy data, The Journal of Integral Equations and Applications, 19, 359--389. % %
  45. [45]  Collino, F., Fares, M. and Haddar, H. (2003), Numerical and analytical studies of the linear sampling method in electromagnetic scattering problems, Inverse Problems, 19, 1279-1299. % %
  46. [46]  Colton, D. and Kress, R. (1983), Integral Equation Methods in Scattering Theory, Wiley. % % %
  47. [47]  Colton, D. and Kress, R. (1992), %Inverse Acoustic and Electromagnetic Scattering Theory, %Springer-Verlag. % %
  48. [48]  Colton, D. and Kirsch, A. (1997), %A simple method for solving inverse scattering problems in the resonance region, %Inverse Problems, 12, 383-393. % %
  49. [49]  Colton, D. Pianna, M., and Potthast, R. (1997), %A simple method using Morozov's discrepancy principle for solving inverse scattering problem, %Inverse Problems, 13, 1477-1493. % %
  50. [50]  Colton, D., Haddar, H., and Pianna, M. (2003), %The linear sampling method in inverse electromagnetic scattering theory, %Inverse problems, 19, 105--137. % %
  51. [51]  Kirsch, A. and Grinberg, N. (2008), %The Factorization Method for Inverse Problems, Oxford University Press, Oxford. % %
  52. [52]  Lakhtakia, A., Varadan, V.K., and Varadan, V.V. (1989), %Time-harmonic Electromagnetic Fields in Chiral Media, %Lecture Notes in Physics, Springer-Berlin. % %
  53. [53]  Lakhtakia, A., Varadan, V.K., and Varadan, V.V. (1991), %Surface integral equations for scattering by PEC scatterers in isotropic chiral %media, International Journal of Engineering Science,, 29(2), 179-185. % %
  54. [54]  Lakhtakia, A. (1994), Beltrami Fields in Chiral Media, World Scientific, Singapore. % % %
  55. [55]  Lindell, I.V., Sihvola, A.H., Tretyakov, S.A., and Viitanen, A.J. (1994), %Electromagnetic Waves in Chiral and Bi-isotropic Media, %Artech House, Boston. % %
  56. [56]  McLean, W. (2003), Strongly Elliptic Systems and Boundary Integral equations, Cambridge University Press, Cambridge. % %
  57. [57]  Monk, P. (2003), Finite Element Methods for Maxwell's Equations, %Clarendon Press, Oxford. % %
  58. [58]  Roach, G.F., Stratis, I.G., and Yannacopoulos, A.N. (2012), %Mathematical Analysis of Deterministic and Stochastic Problems in Complex Media %Electromagnetics, Princeton Series in Applied Mathematics, Princeton University Press, New Jersey. % %
  59. [59] Stephan, E.P. (1987), %Boundary integral equations for screen problems in $\mathbb{R}^3$, %Integral Eqns Operator Theory, 10, 236-257. % %
  60. [60]  Tai, C.T. (1994), Dyadic Green Functions in Electromagnetic Theory, 2nd edition, IEEE Press, New York.