Journal of Vibration Testing and System Dynamics
Louise Petr'{e}n -- A Mathematician Whose Work
Waited for a Century to Be Appreciatedfootnote{The article is accepted
for publication in the journal of mathematical societies of Moscow, St.
Petersburg and Nizhny Novgorod ``Mathematics in Higher Education'', No. 18,
2020. Translated from Russian by professor O.V. Petrova.}
Journal of Vibration Testing and System Dynamics 5(3) (2021) 221--232 | DOI:10.5890/JVTSD.2021.09.002
Inna S. Emelyanova
Campbell, California, USA
Download Full Text PDF
Abstract
Louise Petr\'{e}n (Hedvig Louise Beata Petr\'{e}n-Overton, 1880-1977) was
the first Swedish woman to defend her doctoral thesis in mathematics in
1911. It took nearly a hundred years for her thesis to be duly appreciated.
References
-
[1]  | Grevholm, B. (2002), Louise P\{etren, the first woman in Sweden to win a doctorate in mathematics}, Women and mathematics: conference on 12-14 April.
2002: conference report. - 2004. Kristianstad. p. 71-82. (in Swedish:
Grevkholm, Barbro. Louise Petr\{en, f\"{o}rsta kvinnan i Sverige som er\"{o}vrade doktorsgrad i matematik}).
|
-
[2]  | Haikola, L. (2006), Louise Petr\{en-Overton, min mormor}. P. 5-7; Louise Petr\{en- Overton, my grandmother}. p. 8-9, Archives of ALGA. ALGA Publications.
Blekinge Institute of Technology. Karlskrona, Sweden. Volume 3.
|
-
[3]  | Perouansky, M. (2015), {The Overton in Meyer--Overton: a biographical sketch commemorating the 150th anniversary of Charles Ernest Overtons birth}, British Journal of Anaesthesia, 114(4),
p. 537--541.
|
-
[4]  |
{https://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/overton-charles-ernest}
|
-
[5]  | Louise, P. (1911), Extension of Laplace`s method to the equations
$\sum_{i=0}^{n-1} {A_{1i} } (x,y)\frac{\partial ^{i+1}z}{\partial
x\partial y^i}+\sum_{i=0}^n {A_{0i} } (x,y)\frac{\partial
^iz}{\partial y^i}=0.$ Lunds Universitets Arsskrift. N.F. Afd. 2 Bd. 7. Nr.
3. S. 1-165. Kongl. Fysiografiska S\"{a}llskapets Handlingar. N.F. Bd. 22.
Nr. 3. Imorimerie H\"{a}kan Ohlsson. Lund 1911.
|
-
[6]  | Archives of ALGA. (2006), ALGA Publications, Blekinge Institute of Technology,
Karlskrona, Sweden. Volume 3, p. 3--31.
|
-
[7]  | P Laura, P. (1905), {Sulla estensione del metodo di Laplace alle equazioni differenziali lineari di ordine qualunque con due variabili indipendenti}, Rendiconti del Circolo Matemmatico di
Palermo, T. 20, p. 344--374.
|
-
[8]  | Ibragimov, N.H. (2006), A Practical Course in Differential Equations and Mathematical Modelling, ALGA Publications. Blekinge Institute of Technology.
Karskrona, Sweden. Third Edition. 370 p.
|
-
[9]  | Ibragimov, N.H. (2004), Equivalence groups and invariants of linear and non-linear equations, Archives of ALGA, ALGA Publications, Blekinge
Institute of Technology, Karlskrona, Sweden. Volume 1, p. 9-65.
|
-
[10]  | Ibragimov, N.H. (2004), {Invariants of Hyperbolic Equations: Solution of the Laplace Problem}, Journal of Applied Mechanics and
Technical Physics, Volume 45, Issue 2, p. 158-166.
|
-
[11]  | Tsarev, S.P. (2009), Factorization of Linear Systems, P. 111-131 as the chapter of book ``Algebraic
Theory of Differential Equations / Edited by M. Maccallum and A.
Mikhailov. Cambridge University Press, 248 p.
|
-
[12]  | Ganzha, E.I. Euler integrals and multi-integrals of linear partial differential equations, Mathematical Notes, 89(\ref{eq1}) p. 37-50.
|
-
[13]  | Ganzha, E.I. and Tsarev, S.P. (2007), Classical methods of integrating of hyperbolic systems and equations of the second order / Textbook. Krasnoyarsk State Pedagogical
University named after V.P. Astafiev. --- Krasnoyarsk, 118 p. (in
Russian).
|
-
[14]  | Swedish Biographical Dictionary,
{https://sok.riksarkivet.se/sbl/Presentation.aspx?id=7164}.
|
-
[15]  | Lars, G. (1998), Mathematics and mathematicians. Mathematics in Sweden before 1950. History of mathematics, Vol. 13, AMS, Translated
from the Swedish by Lars Garding.
|