Skip Navigation Links
Journal of Vibration Testing and System Dynamics

C. Steve Suh (editor), Pawel Olejnik (editor),

Xianguo Tuo (editor)

Pawel Olejnik (editor)

Lodz University of Technology, Poland

Email: pawel.olejnik@p.lodz.pl

C. Steve Suh (editor)

Texas A&M University, USA

Email: ssuh@tamu.edu

Xiangguo Tuo (editor)

Sichuan University of Science and Engineering, China

Email: tuoxianguo@suse.edu.cn


Louise Petr'{e}n -- A Mathematician Whose Work Waited for a Century to Be Appreciatedfootnote{The article is accepted for publication in the journal of mathematical societies of Moscow, St. Petersburg and Nizhny Novgorod ``Mathematics in Higher Education'', No. 18, 2020. Translated from Russian by professor O.V. Petrova.}

Journal of Vibration Testing and System Dynamics 5(3) (2021) 221--232 | DOI:10.5890/JVTSD.2021.09.002

Inna S. Emelyanova

Campbell, California, USA

Download Full Text PDF

 

Abstract

Louise Petr\'{e}n (Hedvig Louise Beata Petr\'{e}n-Overton, 1880-1977) was the first Swedish woman to defend her doctoral thesis in mathematics in 1911. It took nearly a hundred years for her thesis to be duly appreciated.

References

  1. [1]  Grevholm, B. (2002), Louise P\{etren, the first woman in Sweden to win a doctorate in mathematics}, Women and mathematics: conference on 12-14 April. 2002: conference report. - 2004. Kristianstad. p. 71-82. (in Swedish: Grevkholm, Barbro. Louise Petr\{en, f\"{o}rsta kvinnan i Sverige som er\"{o}vrade doktorsgrad i matematik}).
  2. [2]  Haikola, L. (2006), Louise Petr\{en-Overton, min mormor}. P. 5-7; Louise Petr\{en- Overton, my grandmother}. p. 8-9, Archives of ALGA. ALGA Publications. Blekinge Institute of Technology. Karlskrona, Sweden. Volume 3.
  3. [3]  Perouansky, M. (2015), {The Overton in Meyer--Overton: a biographical sketch commemorating the 150th anniversary of Charles Ernest Overtons birth}, British Journal of Anaesthesia, 114(4), p. 537--541.
  4. [4]  {https://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/overton-charles-ernest}
  5. [5]  Louise, P. (1911), Extension of Laplace`s method to the equations $\sum_{i=0}^{n-1} {A_{1i} } (x,y)\frac{\partial ^{i+1}z}{\partial x\partial y^i}+\sum_{i=0}^n {A_{0i} } (x,y)\frac{\partial ^iz}{\partial y^i}=0.$ Lunds Universitets Arsskrift. N.F. Afd. 2 Bd. 7. Nr. 3. S. 1-165. Kongl. Fysiografiska S\"{a}llskapets Handlingar. N.F. Bd. 22. Nr. 3. Imorimerie H\"{a}kan Ohlsson. Lund 1911.
  6. [6] Archives of ALGA. (2006), ALGA Publications, Blekinge Institute of Technology, Karlskrona, Sweden. Volume 3, p. 3--31.
  7. [7]  P Laura, P. (1905), {Sulla estensione del metodo di Laplace alle equazioni differenziali lineari di ordine qualunque con due variabili indipendenti}, Rendiconti del Circolo Matemmatico di Palermo, T. 20, p. 344--374.
  8. [8] Ibragimov, N.H. (2006), A Practical Course in Differential Equations and Mathematical Modelling, ALGA Publications. Blekinge Institute of Technology. Karskrona, Sweden. Third Edition. 370 p.
  9. [9] Ibragimov, N.H. (2004), Equivalence groups and invariants of linear and non-linear equations, Archives of ALGA, ALGA Publications, Blekinge Institute of Technology, Karlskrona, Sweden. Volume 1, p. 9-65.
  10. [10] Ibragimov, N.H. (2004), {Invariants of Hyperbolic Equations: Solution of the Laplace Problem}, Journal of Applied Mechanics and Technical Physics, Volume 45, Issue 2, p. 158-166.
  11. [11] Tsarev, S.P. (2009), Factorization of Linear Systems, P. 111-131 as the chapter of book ``Algebraic Theory of Differential Equations / Edited by M. Maccallum and A. Mikhailov. Cambridge University Press, 248 p.
  12. [12] Ganzha, E.I. Euler integrals and multi-integrals of linear partial differential equations, Mathematical Notes, 89(\ref{eq1}) p. 37-50.
  13. [13] Ganzha, E.I. and Tsarev, S.P. (2007), Classical methods of integrating of hyperbolic systems and equations of the second order / Textbook. Krasnoyarsk State Pedagogical University named after V.P. Astafiev. --- Krasnoyarsk, 118 p. (in Russian).
  14. [14] Swedish Biographical Dictionary, {https://sok.riksarkivet.se/sbl/Presentation.aspx?id=7164}.
  15. [15] Lars, G. (1998), Mathematics and mathematicians. Mathematics in Sweden before 1950. History of mathematics, Vol. 13, AMS, Translated from the Swedish by Lars Garding.