Skip Navigation Links
Journal of Vibration Testing and System Dynamics

C. Steve Suh (editor), Pawel Olejnik (editor),

Xianguo Tuo (editor)

Pawel Olejnik (editor)

Lodz University of Technology, Poland

Email: pawel.olejnik@p.lodz.pl

C. Steve Suh (editor)

Texas A&M University, USA

Email: ssuh@tamu.edu

Xiangguo Tuo (editor)

Sichuan University of Science and Engineering, China

Email: tuoxianguo@suse.edu.cn


A General Framework for Dynamic Complex Networks

Journal of Vibration Testing and System Dynamics 5(1) (2021) 87--111 | DOI:10.5890/JVTSD.2021.03.006

Chun-Lin Yang, C. Steve Suh

Nonlinear Engineering and Control Lab, Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123, USA

Download Full Text PDF

 

Abstract

A general framework applicable for characterizing dynamic complex networks is presented. The framework 1) incorporates a revised Kuramoto model to define constituent dynamics, 2) explores information entropy for the description of global ensemble behaviors, 3) defines the variation of the state of connected constituents using energy, and 4) introduces two new time-dependent parameters, i.e., degrees of coupling, to delineate the extent to which the state of one constituent impacts the other. Information entropy which defines the randomness of constituent energy at the microscopic level provides a definitive measure for the ensemble dynamics at the macroscopic level. Whether a dynamic complex network is evolving toward synchronization or deteriorating and collapsing can be determined by tracking ensemble entropy in time. Two popular topological network structures are examined under the framework for their respective network responses. It is found that, in addition to misrepresenting the true network dynamics, static network structures do not differentiate themselves in resolving network properties such as average path length and degree distribution, thus rendering similar interpretations for the underlying network.

References

  1. [1]  Erd\"{o}s, P. and R\{e}nyi, A. (1959), On Random Graphs. I, Publicationes Mathematicae, 6, 290-297.
  2. [2]  Watts, D. and Strogatz, S. (1998), Collective dynamics of `small-world networks, Nature, 393, 440-442.
  3. [3]  Barab\{a}si, A.-L., and Albert, R. (1999), Emergence of Scaling in Random Networks, Science, 286(5439), 509-512.
  4. [4]  Bianconi, G. and Barab\{a}si, A.-L. (2001), Bose-Einstein Condensation in Complex Networks, Phys. Rev. Lett., 86, 5632.
  5. [5]  Bianconi, G. and Barab\{a}si, A.-L. (2001), Completition and Multiscaling in Evolving Networks, Europhys. Lett., 54 (4), 436-442.
  6. [6]  Gibbs, J.W. (1902), Elementary Principles in Statistical Mechanics, Charles Scribners Sons, NY.
  7. [7]  Callen, H.B. (1985), Thermodynamics and an Introduction to Thermostatistics, John Wiley and Sons, NY.
  8. [8]  Lyon, A. (2014), Why are Normal Distributions Normal?, Brit. J. Phil. Sci., 65, 621-649.
  9. [9]  Albert, R. and Barab\{a}si, A.-L. (2002), Statistical Mechanics Of Complex Networks, Reviews of Modern Physics, 74(1), 47-97.
  10. [10]  Bianconi, G. (2009), Entropy of Network Ensembles, Phys. Rev. E, 79, 036114.
  11. [11]  Shannon, C.E., and Weaver, W. (1949), The Mathematical Theory of Communication, University of Illinois Press, 1949. Print, Urbana.
  12. [12]  Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., and Hwang, D.-U. (2006), Complex Networks: Structure and Dynamics, Physics Reports, 424(4-5), 175-308.
  13. [13]  Rossetti, G. and Cazabet, R. (2018), Community Discovery in Dynamic Networks, ACM Computing Surveys, 51(2), 1-37.
  14. [14]  Strogatz, S.H., (2001), Exploring complex networks, Nature, 410, 268-276.
  15. [15]  Lewis, M.A. and Tan, K.-H. (1997), High Precision Formation Control of Mobile Robots Using Virtual Structures, Autonomous Robots, 4, 387-403.
  16. [16]  Consolini, L., Morbidi, F., Prattichizzo, D. and Tosques, M. (2008), Leader-Follower Formation Control of Nonholonomic Mobile Robots with Input Constraints, Automatica, 44(5), 1343-1349.
  17. [17]  Kuramoto, Y. (1975), Self-Entrainment of a Population of Coupled Non-Linear Oscillators, In: Araki H. (eds) International Symposium on Mathematical Problems in Theoretical Physics. Lecture Notes in Physics, 39. Springer, Berlin, Heidelberg.
  18. [18]  Kuramoto, Y. (1984), Chemical Oscillations, Waves, and Turbulence, Springer-Verlag, NY Tokyo.
  19. [19]  Kuramoto, Y. (1984), Cooperative Dynamics of Oscillator Community: A Study Based on Lattice of Rings, Progress of Theoretical Physics Supplement, 79, 223-240.
  20. [20]  Strogatz, S. (2000), From Kuramoto to Crawford: Exploring the Onset of Synchronization in Populations of Coupled Oscillators, Physica D: Nonlinear Phenomena, 143, 1-20.
  21. [21]  Acebr\{o}n, J.A., Bonilla, L.L., P\{e}rez-Vicente, C.J., Ritort, R. and Spigler, R. (2005), The Kuramoto Model: A Simple Paradigm for Synchronization Phenomena, Rev. Mod. Phys., 77, 137.
  22. [22]  Strogatz, S.H., Marcus, C.M., Westervelt, R.M. and Mirollo, R.E. (1989), Collective Dynamics of Coupled Oscillators with Random Pinning, Physica D: Nonlinear Phenomena, 36(1-2), 23-50.
  23. [23]  Strogatz, S., Mirollo, R. and Matthews, P. (1992), Coupled Nonlinear Oscillators below the Synchronization Threshold: Relaxation be Generalized Laudau Damping, Phys. Rev. Lett., 68, 2730.
  24. [24]  Ren, W., Beard, R.W. and Atkins, E.M. (2005), A Survey of Consensus Problems in Multi-Agent Coordination, Proceedings of the 2005, American Control Conference, 2005., Portland, OR, USA, 3, 1859-1864.
  25. [25]  Yang, C.-L., Suh, C.S. and Karkoub, M. (2018), Impact of Coupling Strength On Reaching Network Consensus, Journal of Applied Nonlinear Dynamics, 7, 243-257.