Skip Navigation Links
Journal of Vibration Testing and System Dynamics

C. Steve Suh (editor), Pawel Olejnik (editor),

Xianguo Tuo (editor)

Pawel Olejnik (editor)

Lodz University of Technology, Poland

Email: pawel.olejnik@p.lodz.pl

C. Steve Suh (editor)

Texas A&M University, USA

Email: ssuh@tamu.edu

Xiangguo Tuo (editor)

Sichuan University of Science and Engineering, China

Email: tuoxianguo@suse.edu.cn


Changing Dynamics of the First, Second & Third Approximates of the Exponential Chaotic System & their Synchronization

Journal of Vibration Testing and System Dynamics 4(4) (2020) 337--361 | DOI:10.5890/JVTSD.2020.12.004

Ayub Khan, Lone Seth Jahanzaib, Pushali Trikha , Taqseer Khan

Department Of Mathematics, Jamia Millia Islamia, New Delhi,India

Download Full Text PDF

 

Abstract

In this paper, an exponential chaotic system has been studied and its dynamical properties such as phase plots, time series, Lyapunov exponents, bifurcation diagrams, equilibrium points, Poincare sections etc. have been discussed and compared with its first, second and third approximate systems. The aim of this study is to highlight the entirely different dynamics of the approximations of exponential chaotic systems, where many studies simply replace the exponential chaotic system with its first approximation to study it. Also we have synchronized the chaotic systems and its approximations using a novel technique ``compound difference synchronization".

References

  1. [1] Li, C. and Sprott, J.C. (2014), Multistability in the lorenz system: a broken butterfly, ph{International Journal of Bifurcation and Chaos}, 24(10), 1450131.
  2. [2] Li, C., Sprott, J.C., and Thio, W. (2015), Linearization of the lorenz system, ph{Physics Letters A}, 379(10-11), 888-893.
  3. [3] Lu, J., Chen, G., Cheng, D., and Celikovsky, S. (2002), Bridge the gap between the lorenz system and the chen system, International Journal of Bifurcation and Chaos, 12(12), 2917-2926.
  4. [4] Tabor, M. and Weiss, J. (1981), Analytic structure of the lorenz system, ph{Physical Review A}, 24(4), 2157.
  5. [5] Yu, W. (1999), Passive equivalence of chaos in lorenz system, ph{IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications}, 46(7), 876-878.
  6. [6] Chang, D., Li, Z., Wang, M., and Zeng, Y. (2018), A novel digital programmable multi-scroll chaotic system and its application in fpga-based audio secure communication, ph{AEU International Journal of Electronics and Communications}, 88, 20-29.
  7. [7] Karavaev, A., Kulminskiy, D., Ponomarenko, V., and Prokhorov, M. (2015), An experimental communication scheme based on chaotic time-delay system with switched delay, ph{International Journal of Bifurcation and Chaos}, 25(10), 1550134.
  8. [8] Torrieri, D.J. (1985)ph{Principles of secure communication systems}, Artech House, INC.
  9. [9] Zhang, X.Y., Yu, S.M., and Chen, P., L{\"u}, J.H., He, J.B., and Lin, Z.S. (2017), Design and ARM-embedded implementation of a chaotic secure communication scheme based on H. 264 selective encryption, ph{Nonlinear Dynamics}, 89(3), 1949-1965.
  10. [10] Seyedzadeh, S.M. and Mirzakuchaki, S. (2012), A fast color image encryption algorithm based on coupled two-dimensional piecewise chaotic map, ph{Signal processing}, 92(5), 1202-1215.
  11. [11] Wang, X., Teng, L., and Qin, X (2012), A novel colour image encryption algorithm based on chaos, ph{ Signal Processing}, 92(4), 1101-1108.
  12. [12] Wu, Y., Noonan, J.P., Yang, G., and Jin, H. (2012), Image encryption using the two-dimensional logistic chaotic map, ph{Journal of Electronic Imaging}, 21(1), 013, 014.
  13. [13] Wu, Z., Zhang, X., and Zhong, X. (2019), Generalized chaos synchronization circuit simulation and asymmetric image encryption, ph{IEEE Access}.
  14. [14] Jimenez-Triana, A., Chen, G., and Gauthier, A. (2015), A parameter-perturbation method for chaos control to stabilizing upos, ph{IEEE Transactions on Circuits and Systems II: Express Briefs}, 62(4), 407-411.
  15. [15] Zhang, H.G., Liu, D.R., and Wang, Z.L. (2009), ph{Controlling chaos: suppression, synchronization and chaotification}, Springer Science and Business Media.
  16. [16] Yadav, V.K., Shukla, V.K., and Das, S. (2019), Difference synchronization among three chaotic systems with exponential term and its chaos control, ph{Chaos, Solitons $\&$ Fractals}, 124, 36-51.
  17. [17] Luo, A.C.J. (2009), A theory for synchronization of dynamical systems, ph{Communications in Nonlinear Science and Numerical Simulation}, 14(5), 1901-1951.
  18. [18] Pecora, L.M. and Carroll, T.L. (1990), Synchronization in chaotic systems, ph{Phys. Rev. Lett.}, 64, 821-824. DOI:10.1103/PhysRevLett.64.821. URL https://link.aps.org/doi/ 10.1103/PhysRevLett.64.821.
  19. [19] Guo, W. (2011), Lag synchronization of complex networks via pinning control, ph{Nonlinear Analysis: Real World Applications}, 12(5), 2579-2585.
  20. [20] Jiang, C., Liu, S., and Luo, C. (2014), A new fractional-order chaotic complex system and its antisynchronization, ph{In: Abstract and Applied Analysis}, Hindawi.
  21. [21] Jiang, C., Zhang, F., and Li, T. (2018), Synchronization and antisynchronization of n-coupled fractional-order complex chaotic systems with ring connection, ph{Mathematical Methods in the Applied Sciences}, 41(7), 2625-2638.
  22. [22] Khan, A. and Bhat, M.A. (2017), Multi-switching combination-combination synchronization of non-identical fractional-order chaotic systems, ph{Mathematical Methods in the Applied Sciences}, 40(15), 5654-5667.
  23. [23] Khan, A., Khattar, D., and Prajapati, N. (2017), Adaptive multi switching combination synchronization of chaotic systems with unknown parameters, ph{International Journal of Dynamics and Control}, pp. 1-9.
  24. [24] Khan, A. and Bhat, M.A. (2017), Multiswitching compound antisynchronization of four chaotic systems, Pramana, 89(6), 90.
  25. [25] Khan, A. and Tyagi, A. (2018), Disturbance observer-based adaptive sliding mode hybrid projective synchronisation of identical fractional-order financial systems, ph{Pramana}, 90(5), 67.
  26. [26] Khan, A. and Trikha, P. (2019), Compound difference anti-synchronization between chaotic systems of integer and fractional order, SN Appl. Sci., 1, 757. https://doi.org/10.1007/s42452-019-0776-x.
  27. [27] Mahmoud, G.M. and Mahmoud, E.E. (2010), Phase and antiphase synchronization of two identical hyperchaotic complex nonlinear systems, ph{Nonlinear Dynamics}, 61(1-2), 141-152.
  28. [28] Mahmoud, G.M. and Mahmoud, E.E. (2012), Lag synchronization of hyperchaotic complex nonlinear systems, ph{Nonlinear Dynamics}, 67(2), 1613-1622.
  29. [29] Park, J.H. (2005), Adaptive synchronization of hyperchaotic chen system with uncertain parameters, ph{Chaos, Solitons and Fractals}, 26(3), 959-964.
  30. [30] Skardal, P.S., Sevilla-Escoboza, R., Vera-Avila, V., and Buldu, J.M (2017), Optimal phase synchronization in networks of phase-coherent chaotic oscillators, ph{Chaos: An Interdisciplinary Journal of Nonlinear Science}, 27(1), 013, 111.
  31. [31] Feki, M. (2003), An adaptive chaos synchronization scheme applied to secure communication, ph{Chaos, Solitons and Fractals}, 18(1), 141-148.
  32. [32] Vaidyanathan, S., Volos, C.K., Kyprianidis, I., Stouboulos, I., and Pham, V.T. (2015), Analysis, adaptive control and anti-synchronization of a six-term novel jerk chaotic system with two exponential nonlinearities and its circuit simulation, ph{Journal of Engineering Science and Technology Review}, 8(2).
  33. [33] Li, C., Hu, W., Sprott, J.C., and Wang, X. (2015), Multistability in symmetric chaotic systems, ph{The European Physical Journal Special Topics}, 224(8), 1493-1506.
  34. [34] Patra, P.K., Hoover, W.G., Hoover, C.G., and Sprott, J.C. (2016), The equivalence of dissipation from gibbs entropy production with phase-volume loss in ergodic heat-conducting oscillators, ph{International Journal of Bifurcation and Chaos}, 26(05), 1650, 089.
  35. [35] Qin, W.X. and Chen, G. (2007), On the boundedness of solutions of the chen system, ph{Journal of Mathematical Analysis and Applications}, 329(1), 445-451.
  36. [36] Jafari, S., Pham, V.T., and Kapitaniak, T. (2016), Multiscroll chaotic sea obtained from a simple 3d system without equilibrium, ph{International Journal of Bifurcation and Chaos}, 26(02), 1650, 031.
  37. [37] Jafari, S., Sprott, J.C., and Molaie, M. (2016), A simple chaotic ow with a plane of equilibria, ph{International Journal of Bifurcation and Chaos}, 26(06), 1650, 098.
  38. [38] Pham, V.T., Jafari, S., Wang, X., and Ma, J. (2016), A chaotic system with different shapes of equilibria, ph{International Journal of Bifurcation and Chaos}, 26(04), 1650, 069.
  39. [39] Geist, K., Parlitz, U., and Lauterborn, W. (1990), Comparison of different methods for computing lyapunov exponents, ph{Progress of theoretical physics}, 83(5), 875-893.
  40. [40] Wolf, A., Swift, J.B., Swinney, H.L., and Vastano, J.A. (1985), Determining lyapunov exponents from a time series, ph{Physica D: Nonlinear Phenomena}, 16(3), 285-317.
  41. [41] Evans, D.J., Cohen, E., Searles, D.J., and Bonetto, F. (2000), Note on the kaplan-yorke dimension and linear transport coefficients, ph{Journal of Statistical Physics}, 101(1-2), 17-34.
  42. [42] Zabihi, M., Kiranyaz, S., Rad, A.B., Katsaggelos, A.K., Gabbouj, M., and Ince, T. (2016), Analysis of high-dimensional phase space via poincare section for patient-specific seizure detection, ph{IEEE Transactions on Neural Systems and Rehabilitation Engineering}, 24(3), 386-398.
  43. [43] Broucke, M. (1987), One parameter bifurcation diagram for chua's circuit, ph{IEEE transactions on circuits and systems}, 34(2), 208-209.
  44. [44] Kousaka, T., Ueta, T., and Kawakami, H. (1999), Bifurcation of switched nonlinear dynamical systems, ph{IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing}, 46(7), 878-885.
  45. [45] Wei, Z. (2011), Dynamical behaviors of a chaotic system with no equilibria, ph{Physics Letters A}, 376(2), 102-108.
  46. [46] Khan, A. and Singh, S. (2018), Chaotic analysis and combination-combination synchronization of a novel hyperchaotic system without any equilibria, ph{Chinese journal of physics}, 56(1), 238-251.
  47. [47] Trikha, P.N. and Jahanzaib, L.S. (2020), Combination difference synchronization between identical generalised Lotka-Volterra chaotic systems, ph{Journal of Scientific Research}, 12(2), 183-188.
  48. [48] Yadav, V.K., Kumar, R., Leung, A.Y.T., and Das, S. (2019), Dual phase and dual anti-phase synchronization of fractional order chaotic systems in real and complex variables with uncertainties. ph{Chinese journal of physics}, 57, 282-308.
  49. [49] He, J., Chen, F., and Lei, T. (2018), Fractional matrix and inverse matrix projective synchronization methods for synchronizing the disturbed fractional-order hyperchaotic system, ph{Mathematical Methods in the Applied Sciences}, 41(16), 6907-6920.
  50. [50] Khan, A. and Bhat, M.A. (2016), Hybrid projective synchronization of fractional order chaotic systems with fractional order in the interval (1, 2), ph{Nonlinear Dyn Syst Theory}, 16(4), 350-365.
  51. [51] Khan, A., Khattar, D., and Prajapati, N. (2018), ph{Reduced order multi switching hybrid synchronization of chaotic systems}.
  52. [52] de Leeuw, S.W., Perram, J.W., and Petersen, H.G. (1990), Hamilton's equations for constrained dynamical systems, ph{Journal of Statistical Physics}, 61(5-6), 1203-1222.
  53. [53] Singh, A.K., Yadav, V.K., and Das, S. (2016), Comparative study of synchronization methods of fractional order chaotic systems., ph{Nonlinear Engineering}, 5(3), 185-192.
  54. [54] Vaidyanathan, S. (2014), Generalised projective synchronisation of novel 3-d chaotic systems with an exponential non-linearity via active and adaptive control, ph{International Journal of Modelling, Identification and Control}, 22(3), 207-217.