Skip Navigation Links
Journal of Vibration Testing and System Dynamics

C. Steve Suh (editor), Pawel Olejnik (editor),

Xianguo Tuo (editor)

Pawel Olejnik (editor)

Lodz University of Technology, Poland

Email: pawel.olejnik@p.lodz.pl

C. Steve Suh (editor)

Texas A&M University, USA

Email: ssuh@tamu.edu

Xiangguo Tuo (editor)

Sichuan University of Science and Engineering, China

Email: tuoxianguo@suse.edu.cn


Feasibility of Controlling Gas Concentration and Temperature Distributions in a Semiconductor Chamber with CT-TDLAS

Journal of Vibration Testing and System Dynamics 4(4) (2020) 297--309 | DOI:10.5890/JVTSD.2020.12.001

Daisuke Hayashi$^{1, 2 }$ , Junya Nakai$^{1}$, Masakazu Minami$^{1}$, Takahiro Kamimoto$^{2}$, Yoshihiro Deguchi$^{2}$

$^{1}$ HORIBA STEC, Co., Ltd., Kyoto 601-8116, Japan

$^{2}$ Graduate School of Advanced Technology and Science, Tokushima University, Tokushima, 770-8506, Japan

Download Full Text PDF

 

Abstract

The feasibility to control the gas concentration and temperature distributions in a semiconductor process chamber by measuring them was investigated. Gas concentration and temperature distributions for various flow rates were measured with the computed tomography-tunable diode laser absorption spectroscopy (CT-TDLAS). The infrared absorption spectra of multiple laser paths passing through the measured area were collected and the distributions of methane concentration and temperature in the chamber were reconstructed with the computed tomography (CT) calculations. The measured results indicated that the distributions can be independently controlled by measuring with the CT-TDLAS and adjusting the flow rates and the susceptor temperature.

References

  1. [1]  Ishikawa, K., Ishijima, T., Shiraguji, T., Armini, S., Despiau-Pujo., E., Gattscho, R.A., Kanarik, K.J., Leusink, G.J., Marchack, N., Murayama, T., Morikawa, Y., Oehrin, G.S., Park, S., Hayashi, H., and Kinoshita, K. (2019), Rethinking surface reactions in nanoscale dry process toward atomic precision and beyond: a physics and chemistry perspective, Jpn. J. Appl. Phys., 58, SE0801.
  2. [2]  Kanarik, K.J., Lill, T., Hudson, E.A., Sriraman, S., Tan, S., Marks, J., Vahedi, V., and Gottscho, R.A. (2015), Overview of atomic layer etching in the semiconductor industry, J. Vac. Sci. Technol. A, 33, 020802.
  3. [3]  Carver, C.T., Plombon, J.J., Romero, P.E., Suri, S., Tronic, T.A., and Turkot, R.B.Jr. (2015), Atomic layer etching: an industry perspective, J. Solid State Sci. Technol., 4, N5005.
  4. [4]  Tan, S., Yang, W., Kanarik, K.J., Lill, T., Vahedi, V., Marks, J., and Gottscho, R.A. (2015), Highly selective directional atomic layer etching of sillicon, J. Solid State Sci. Technol., 4, N5010.
  5. [5]  Oehrlein, G.S., Metzler, D., and Li, C. (2015), Atomic layer etching at the tipping point: an overview, J. Solid State Sci. Technol., 4, N5041.
  6. [6]  Kim, T.W. and Aydil, E.S. (2003), Effects of chamber wall conditions on Cl concentration and Si etch rate uniformity in plasma etching reactors, J. Electrochem. Soc., 150, G418.
  7. [7]  Fukasawa, M., Kawashima, A., Kuboi, N., Takagi, H., Tanaka, Y., Sakayori, H., Oshima, K., Nagahata, K., and Tatsumi, T. (2008), Prediction of fluctuations in plasma wall interactions using an EES, Proc. Dry Process Int. Symp., p. 247.
  8. [8]  Haq, A.U. and Djurdjanovic, D. (2016), Virtual metrology concept for predicting defect levels in semiconductor manufacturing, Procedia CIRP, 57, 580.
  9. [9]  Nomura, K., Okazaki, T., Yasuda, S., Kawashima, A., Tani, H., and Matsuda, K. (2011), Virtual metrology of dry etching process characteristics using EES and OES, Proc. AEC/APC Symp. Asia, PC-O-018.
  10. [10]  Ito, M., Hamaoka, H., Veerasingam, R., Nam, S.K., Sevillano, E., and Nojiri, K. (2012), TEOS etch rate predictions using virtual metrology, Proc. Int. Symp. Dry Process, p. 33.
  11. [11]  Yasuda, S., Okazaki, T., and Nomura, K. (2013), The VM$\cdot $APC activities in Sony Semiconductor, Proc. AEC/APC Symp. Asia, PC-O-22.
  12. [12]  Ropcke, J., Welzel, S., Lang, N., Hempel, F., Gatilova, L., Guaitella, O., Rousseau, A., and Davies, P.B. (2008), Diagnostic studies of molecular plasmas using mid-infrared semiconductor lasers, Appl. Phys. B., 92, 335.
  13. [13]  Ropcke, J., Davies, P.B., Hamann, S., Hannemann, M., Lang, N., and van Hleden, H. (2016), Applying quantum cascade laser spectroscopy in plasma diagnostics, Photonics, 3, 45.
  14. [14]  Lang, N., Zimmermann, S., Zimmermann, H., Macherius, U., Uhlig, B., Schaller, M., Schults, S.E., and Ropke, J. (2015), On treatment of ultra-low-k SiCOH in CF$_{4}$ plasmas: correlation between the concentration of etching products and etching rate, Appl. Phys. B, 119, 219.
  15. [15]  Hubner, M., Lang, N., Zimmermann, S., Schlz, S.E., Buchholtz, W., Ropcke, J., and van Helden, J.H. (2015), Quantum cascade laser based monitoring of CF$_{2}$ radical concentration as a diagnostic tool of dielectric etching plasma processes, Appl. Phys. Lett., 106, 031102.
  16. [16]  Hori, M., Kondo, H., and Hiramatsu, M. (2011), Radical-controlled plasma processing for nanofabrication, Appl. Phys. D, 44, 174027.
  17. [17]  Lee, C.G.N., Kanarik, K.J., and Gottscho, R.A. (2014), The grand challenges of plasma etching: a manufacturing perspective, J. Phys. D, 47, 273001.
  18. [18]  Ishikawa, K., Karahashi, K., Ishijima, T., Cho, S.I., Elliott, S., Hausmann, D., Mocuta, D., Wilson, A., and Kinoshita, K., (2018), Progress in nanoscale dry processes for fabrication of high-aspect-ratio features: How can we control critical dimension uniformity at the bottom? Jpn. J. Appl. Phys., 57, 06JA01.
  19. [19]  Cai, W. and Kaminski, C.F. (2017), Tomographic absorption spectroscopy for the study of gas dynamics and reactive flows, Prog. Ene. Comb. Sci., 59, 1.
  20. [20]  Wright, P., Garcia-Stewart, C.A., Carey, S.J., Hindle, F.P., Pegrum, S.H., Colbourne, S.M., Turner, P.J., Hurr, W.J., Litt, T.J., Murray, S.C., Crossley, S.D., Ozanyan, K.B., and McCann, H. (2005), Toward in-cylinder absorption tomography in a production engine, App. Opt., 44, 6578.
  21. [21]  Wright, P., Terzija, N., Davidson, J.L., Garria-Castillo, S., Garcia-Stewart, C., Pegrum, S., Colbourne, S., Turner, P., Crossley, S.D., Litt, T., Murray, S., Ozanyan, K.B., and MacCann, H. (2010), High-speed chemical species tomography in a multi-cylinder automotive engine, Chem. Eng. J., 158, 2
  22. [22]  An, X., Kraetschmer, T., Takami, K., Sanders, S.T., Ma, L., Cai, W., Li, X., Roy, S., and Gord, J.R. (2011), Validation of temperature imaging by H$_{2}$O absorption spectroscopy using hyperspectral tomography in controlled experiments, App. Opt., 50, A29.
  23. [23]  Liu, C., Xu, L., Cao, Z., and McCann, H., (2014), Reconstruction of axisymmetric temperature and gas concentration distributions by combining fan-beam TDLAS with onion-peeling deconvolution, IEEE Trans. Instr. Meas., 63, 3067.
  24. [24]  Cai, W. and Kaminski, C.F. (2014), A tomographic technique for the simultaneous imaging of temperature, chemical species, and pressure in reactive flows using absorption spectroscopy with frequency-agile laser, App. Phys. Lett., 104, 034101.
  25. [25]  Cai, W. and Kaminski, C. F. (2014), Multiplexed absorption tomography with calibration-free wavelength modulation spectroscopy, App. Phys. Lett., 104, 154106.
  26. [26]  Cai, W. and Kaminski, C.F. (2015), A numerical investigation of high-resolution multispectral absorption tomography for flow thermometry, App. Phys. B, 119, 29.
  27. [27]  Sun, P., Zhang, Z., Li, Z., Guo, Q., and Dong, F. (2017), A study of two dimensional tomography reconstruction of temperature and gas concentration in a combustion field using TDLAS, Appl. Sci., 7, 990.
  28. [28]  Kamimoto, T., Deguchi, Y., Choi, D.W., and Shim, J.H. (2016), Validation of the real-time 2D temperature measurement method using the CT tunable diode laser absorption spectroscopy, Heat Trans. Res., 47, 193.
  29. [29]  Deguchi, Y., Kamimoto, T., Wang, Z.Z., Yan, J.J., Liu, J.P., Watanabe, H., and Kurose, R. (2014), Applications of laser diagnostics to thermal power plants and engines, Appl. Therm. Eng., 73, 1453.
  30. [30]  Deguchi, Y., Kamimoto, T., and Kiyota, Y. (2015), Time resolved 2D concentration and temperature measurement using tunable laser absorption spectroscopy, Flow Meas. Instr., 46, 312.
  31. [31]  Kamimoto, T. and Deguchi, Y. (2015), Temperature detection characteristics of engine exhaust gases using tunable diode laser absorption spectroscopy, Int. J. Mech. Syst. Eng., 1, 109.
  32. [32]  Matsui, H., Udagawa, K., Deguchi, Y., and Kamimoto, T. (2019), Simultaneous two cross-sectional measurements of NH$_{3}$ concentration in bent pipe flow using CT-tunable diode laser absorption spectroscopy, J. Therm. Sci. Tech., 14, JTST0016.
  33. [33]  Ma, L., Li, X., Sanders, S.T., Caswell, A.W., Roy, S., Plemmons, D.H., and Gord, J.R. (2013), 50-kHz-rate 2D imaging of temperature and H$_{2}$O concentration at the exhaust plane of a J85 engine using hyperspectral tomography, Opt. Exp., 21, 1152.
  34. [34]  Hayashi, D., Nakai, J., Minami, M., Fujita, K., Kamimoto, T., and Deguchi, Y. (2018), CH$_{4}$ concentration distribution in a semiconductor process chamber measured by the CT-TDLAS, J. Solid State Sci. Technol., 7, Q211.
  35. [35]  Hayashi, D., Nakai, J., Minami, M., Kamimoto, T., and Deguchi, Y. (2019), Simultaneous measurement of CH4 concentration and temperature distributions in a semiconductor process chamber, J. Phys. D., 52, 485107.
  36. [36]  Lackner, M. (2007), Tunable diode laser absorption spectroscopy (TDLAS) in the process industries -- a review, Rev. Chem. Eng., 23, 65.
  37. [37]  Allen, M.G. (1998), Diode laser absorption sensors for gas-dynamic and combustion flows, Meas. Sci. Technol., 9, 545.
  38. [38]  Ma, L. and Cai, W. (2008), Numerical investigation of hyperspectral tomography for simultaneous temperature and concentration imaging, App. Opt., 47, 3751.
  39. [39]  Kasyutich, V.L. and Martin, P.A. (2011), Towards a two-dimensional concentration and temperature laser absorption tomography sensor system, Appl. Phys. B, 102, 149.
  40. [40]  Wang, F., Cen, K.F., Li, N., Jefferies, J.B., Huang, Q.X., Yan, J.H., and Chi, Y. (2010), Two-dimensional tomography for gas concentration and temperature distributions based on tunable diode laser absorption spectroscopy, Meas. Sci. Technol., 21, 045301.
  41. [41]  Liu, C., Xu, L., Chen, J., Cao, Z., Lin, Y., and Cai, W. (2015), Development of a fan-beam TDLAS-based tomographic sensor for rapid imaging of temperature and gas concentration, Opt. Exp., 23, 22494.