Journal of Vibration Testing and System Dynamics
Feasibility of Controlling Gas Concentration and Temperature Distributions in a Semiconductor Chamber with CT-TDLAS
Journal of Vibration Testing and System Dynamics 4(4) (2020) 297--309 | DOI:10.5890/JVTSD.2020.12.001
Daisuke Hayashi$^{1, 2 }$ , Junya Nakai$^{1}$, Masakazu Minami$^{1}$, Takahiro Kamimoto$^{2}$, Yoshihiro Deguchi$^{2}$
$^{1}$ HORIBA STEC, Co., Ltd., Kyoto 601-8116, Japan
$^{2}$ Graduate School of Advanced Technology and Science, Tokushima University, Tokushima, 770-8506,
Japan
Download Full Text PDF
Abstract
The feasibility to control the gas concentration and temperature distributions in a semiconductor process chamber by measuring them was investigated. Gas concentration and temperature distributions for various flow rates were measured with the computed tomography-tunable diode laser absorption spectroscopy (CT-TDLAS). The infrared absorption spectra of multiple laser paths passing through the measured area were collected and the distributions of methane concentration and temperature in the chamber were reconstructed with the computed tomography (CT) calculations. The measured results indicated that the distributions can be independently controlled by measuring with the CT-TDLAS and adjusting the flow rates and the susceptor temperature.
References
-
[1]  | Ishikawa, K., Ishijima, T., Shiraguji, T., Armini, S., Despiau-Pujo., E.,
Gattscho, R.A., Kanarik, K.J., Leusink, G.J., Marchack, N., Murayama, T.,
Morikawa, Y., Oehrin, G.S., Park, S., Hayashi, H., and Kinoshita, K.
(2019), Rethinking surface reactions in nanoscale dry process toward atomic
precision and beyond: a physics and chemistry perspective, Jpn. J. Appl. Phys., 58,
SE0801.
|
-
[2]  | Kanarik, K.J., Lill, T., Hudson, E.A., Sriraman, S., Tan, S., Marks,
J., Vahedi, V., and Gottscho, R.A. (2015), Overview of atomic layer etching
in the semiconductor industry, J. Vac. Sci. Technol. A, 33, 020802.
|
-
[3]  | Carver, C.T., Plombon, J.J., Romero, P.E., Suri, S., Tronic, T.A.,
and Turkot, R.B.Jr. (2015), Atomic layer etching: an industry perspective,
J. Solid State Sci. Technol., 4, N5005.
|
-
[4]  | Tan, S., Yang, W., Kanarik, K.J., Lill, T., Vahedi, V., Marks, J., and
Gottscho, R.A. (2015), Highly selective directional atomic layer etching of
sillicon, J. Solid State Sci. Technol., 4, N5010.
|
-
[5]  | Oehrlein, G.S., Metzler, D., and Li, C. (2015), Atomic layer etching at
the tipping point: an overview, J. Solid State Sci. Technol., 4, N5041.
|
-
[6]  | Kim, T.W. and Aydil, E.S. (2003), Effects of chamber wall conditions
on Cl concentration and Si etch rate uniformity in plasma etching reactors,
J. Electrochem. Soc., 150, G418.
|
-
[7]  | Fukasawa, M., Kawashima, A., Kuboi, N., Takagi, H., Tanaka, Y., Sakayori,
H., Oshima, K., Nagahata, K., and Tatsumi, T. (2008), Prediction of
fluctuations in plasma wall interactions using an EES, Proc. Dry Process Int. Symp., p. 247.
|
-
[8]  | Haq, A.U. and Djurdjanovic, D. (2016), Virtual metrology concept for
predicting defect levels in semiconductor manufacturing, Procedia CIRP, 57, 580.
|
-
[9]  | Nomura, K., Okazaki, T., Yasuda, S., Kawashima, A., Tani, H., and
Matsuda, K. (2011), Virtual metrology of dry etching process characteristics
using EES and OES, Proc. AEC/APC Symp. Asia, PC-O-018.
|
-
[10]  | Ito, M., Hamaoka, H., Veerasingam, R., Nam, S.K., Sevillano, E., and
Nojiri, K. (2012), TEOS etch rate predictions using virtual metrology,
Proc. Int. Symp. Dry Process, p. 33.
|
-
[11]  | Yasuda, S., Okazaki, T., and Nomura, K. (2013), The VM$\cdot $APC
activities in Sony Semiconductor, Proc. AEC/APC Symp. Asia, PC-O-22.
|
-
[12]  | Ropcke, J., Welzel, S., Lang, N., Hempel, F., Gatilova, L., Guaitella,
O., Rousseau, A., and Davies, P.B. (2008), Diagnostic studies of molecular
plasmas using mid-infrared semiconductor lasers, Appl. Phys. B., 92, 335.
|
-
[13]  | Ropcke, J., Davies, P.B., Hamann, S., Hannemann, M., Lang, N., and van
Hleden, H. (2016), Applying quantum cascade laser spectroscopy in plasma
diagnostics, Photonics, 3, 45.
|
-
[14]  | Lang, N., Zimmermann, S., Zimmermann, H., Macherius, U., Uhlig, B.,
Schaller, M., Schults, S.E., and Ropke, J. (2015), On treatment of
ultra-low-k SiCOH in CF$_{4}$ plasmas: correlation between the concentration
of etching products and etching rate, Appl. Phys. B, 119, 219.
|
-
[15]  | Hubner, M., Lang, N., Zimmermann, S., Schlz, S.E., Buchholtz, W.,
Ropcke, J., and van Helden, J.H. (2015), Quantum cascade laser based
monitoring of CF$_{2}$ radical concentration as a diagnostic tool of
dielectric etching plasma processes, Appl. Phys. Lett., 106, 031102.
|
-
[16]  | Hori, M., Kondo, H., and Hiramatsu, M. (2011), Radical-controlled
plasma processing for nanofabrication, Appl. Phys. D, 44, 174027.
|
-
[17]  | Lee, C.G.N., Kanarik, K.J., and Gottscho, R.A. (2014), The grand
challenges of plasma etching: a manufacturing perspective, J. Phys. D, 47,
273001.
|
-
[18]  | Ishikawa, K., Karahashi, K., Ishijima, T., Cho, S.I., Elliott, S.,
Hausmann, D., Mocuta, D., Wilson, A., and Kinoshita, K., (2018), Progress in
nanoscale dry processes for fabrication of high-aspect-ratio features: How
can we control critical dimension uniformity at the bottom? Jpn. J. Appl. Phys., 57,
06JA01.
|
-
[19]  | Cai, W. and Kaminski, C.F. (2017), Tomographic absorption
spectroscopy for the study of gas dynamics and reactive flows, Prog. Ene. Comb. Sci., 59,
1.
|
-
[20]  | Wright, P., Garcia-Stewart, C.A., Carey, S.J., Hindle, F.P., Pegrum,
S.H., Colbourne, S.M., Turner, P.J., Hurr, W.J., Litt, T.J., Murray, S.C., Crossley, S.D., Ozanyan, K.B., and McCann, H. (2005), Toward
in-cylinder absorption tomography in a production engine, App. Opt., 44, 6578.
|
-
[21]  | Wright, P., Terzija, N., Davidson, J.L., Garria-Castillo, S.,
Garcia-Stewart, C., Pegrum, S., Colbourne, S., Turner, P., Crossley, S.D.,
Litt, T., Murray, S., Ozanyan, K.B., and MacCann, H. (2010), High-speed
chemical species tomography in a multi-cylinder automotive engine, Chem. Eng. J.,
158, 2
|
-
[22]  | An, X., Kraetschmer, T., Takami, K., Sanders, S.T., Ma, L., Cai, W.,
Li, X., Roy, S., and Gord, J.R. (2011), Validation of temperature imaging
by H$_{2}$O absorption spectroscopy using hyperspectral tomography in
controlled experiments, App. Opt., 50, A29.
|
-
[23]  | Liu, C., Xu, L., Cao, Z., and McCann, H., (2014), Reconstruction of
axisymmetric temperature and gas concentration distributions by combining
fan-beam TDLAS with onion-peeling deconvolution, IEEE Trans. Instr. Meas., 63, 3067.
|
-
[24]  | Cai, W. and Kaminski, C.F. (2014), A tomographic technique for the
simultaneous imaging of temperature, chemical species, and pressure in
reactive flows using absorption spectroscopy with frequency-agile laser,
App. Phys. Lett., 104, 034101.
|
-
[25]  | Cai, W. and Kaminski, C. F. (2014), Multiplexed absorption tomography
with calibration-free wavelength modulation spectroscopy, App. Phys. Lett., 104,
154106.
|
-
[26]  | Cai, W. and Kaminski, C.F. (2015), A numerical investigation of
high-resolution multispectral absorption tomography for flow thermometry,
App. Phys. B, 119, 29.
|
-
[27]  | Sun, P., Zhang, Z., Li, Z., Guo, Q., and Dong, F. (2017), A study of
two dimensional tomography reconstruction of temperature and gas
concentration in a combustion field using TDLAS, Appl. Sci., 7, 990.
|
-
[28]  | Kamimoto, T., Deguchi, Y., Choi, D.W., and Shim, J.H. (2016),
Validation of the real-time 2D temperature measurement method using the CT
tunable diode laser absorption spectroscopy, Heat Trans. Res., 47, 193.
|
-
[29]  | Deguchi, Y., Kamimoto, T., Wang, Z.Z., Yan, J.J., Liu, J.P.,
Watanabe, H., and Kurose, R. (2014), Applications of laser diagnostics to
thermal power plants and engines, Appl. Therm. Eng., 73, 1453.
|
-
[30]  | Deguchi, Y., Kamimoto, T., and Kiyota, Y. (2015), Time resolved 2D
concentration and temperature measurement using tunable laser absorption
spectroscopy, Flow Meas. Instr., 46, 312.
|
-
[31]  | Kamimoto, T. and Deguchi, Y. (2015), Temperature detection
characteristics of engine exhaust gases using tunable diode laser absorption
spectroscopy, Int. J. Mech. Syst. Eng., 1, 109.
|
-
[32]  | Matsui, H., Udagawa, K., Deguchi, Y., and Kamimoto, T. (2019),
Simultaneous two cross-sectional measurements of NH$_{3}$ concentration in
bent pipe flow using CT-tunable diode laser absorption spectroscopy, J. Therm. Sci. Tech.,
14, JTST0016.
|
-
[33]  | Ma, L., Li, X., Sanders, S.T., Caswell, A.W., Roy, S., Plemmons, D.H., and Gord, J.R. (2013), 50-kHz-rate 2D imaging of temperature and
H$_{2}$O concentration at the exhaust plane of a J85 engine using
hyperspectral tomography, Opt. Exp., 21, 1152.
|
-
[34]  | Hayashi, D., Nakai, J., Minami, M., Fujita, K., Kamimoto, T., and
Deguchi, Y. (2018), CH$_{4}$ concentration distribution in a semiconductor
process chamber measured by the CT-TDLAS, J. Solid State Sci. Technol., 7, Q211.
|
-
[35]  | Hayashi, D., Nakai, J., Minami, M., Kamimoto, T., and Deguchi, Y.
(2019), Simultaneous measurement of CH4 concentration and temperature
distributions in a semiconductor process chamber, J. Phys. D., 52, 485107.
|
-
[36]  | Lackner, M. (2007), Tunable diode laser absorption spectroscopy (TDLAS)
in the process industries -- a review, Rev. Chem. Eng., 23, 65.
|
-
[37]  | Allen, M.G. (1998), Diode laser absorption sensors for gas-dynamic and
combustion flows, Meas. Sci. Technol., 9, 545.
|
-
[38]  | Ma, L. and Cai, W. (2008), Numerical investigation of hyperspectral
tomography for simultaneous temperature and concentration imaging, App. Opt., 47,
3751.
|
-
[39]  | Kasyutich, V.L. and Martin, P.A. (2011), Towards a two-dimensional
concentration and temperature laser absorption tomography sensor system,
Appl. Phys. B, 102, 149.
|
-
[40]  | Wang, F., Cen, K.F., Li, N., Jefferies, J.B., Huang, Q.X., Yan, J.H., and Chi, Y. (2010), Two-dimensional tomography for gas concentration and
temperature distributions based on tunable diode laser absorption
spectroscopy, Meas. Sci. Technol., 21, 045301.
|
-
[41]  | Liu, C., Xu, L., Chen, J., Cao, Z., Lin, Y., and Cai, W. (2015),
Development of a fan-beam TDLAS-based tomographic sensor for rapid imaging
of temperature and gas concentration, Opt. Exp., 23, 22494.
|