Skip Navigation Links
Journal of Vibration Testing and System Dynamics

C. Steve Suh (editor), Pawel Olejnik (editor),

Xianguo Tuo (editor)

Pawel Olejnik (editor)

Lodz University of Technology, Poland

Email: pawel.olejnik@p.lodz.pl

C. Steve Suh (editor)

Texas A&M University, USA

Email: ssuh@tamu.edu

Xiangguo Tuo (editor)

Sichuan University of Science and Engineering, China

Email: tuoxianguo@suse.edu.cn


Bifurcation Trees of Period-1 to Period-2 Motions in a Periodically Excited Nonlinear Spring Pendulum

Journal of Vcibration Testing and System Dynamics 4(3) (2020) 201--248 | DOI:10.5890/JVTSD.2020.09.001

Albert C.J. Luo, Yaoguang Yuan

Department of Mechanical and Industrial Engineering, Southern Illinois University Edwardsville, IL 62026-1805, USA

Download Full Text PDF

 

Abstract

The spring-pendulum system has been of greet interest for a long time, and one tried to use the perturbation analysis to understand such a system. Until now, one cannot provide a satisfied result to explain the dynamics of the spring-pendulum system. In this paper, bifurcation trees of period-1 to period-2 motions in a periodically forced, nonlinear spring pendulum system are obtained through the discrete mapping method. The corresponding harmonic frequency-amplitude characteristics of period-1 to period-2 motions are presented, and the stability and bifurcations of period-1 to period-2 motions on the bifurcation trees are presented as well. From the analytical prediction, numerical illustrations of period-1 and period-2 motions are completed for comparison of numerical and analytical solutions. The results presented in this paper are totally different from the traditional perturbation analysis.

References

  1. [1]  Witt, A. and Gorelik, G. (1933), Kolebanya uprugogo mayatnika, kak primer kolebanii dvuh parametricheski svyazannykh lineinikh sistem, Zh. Tekh. Fiz., 3, 294-306. (The oscillation of an elastic pendulum as an example of the oscillations of two parametrically connected linear systems, Zh. Tekh. Fiz., 3(2-3), 294-306.)
  2. [2]  Olsson, M.G. (1976), Why does amass on a spring sometimes misbehave? American Journal of Physics, 44(12), 1211-1212.
  3. [3]  Falk, L. (1978), Recurrence effects in the parametric spring pendulum, American Journal of Physics, 46(11), 1120-1123.
  4. [4]  Lai, H. M. (1984), On the recurrence phenomenon of a resonant spring pendulum, American Journal of Physics, 52(3), 219-223.
  5. [5]  Anicin, B.A., Davidovic, D.M., and Babovic, V.M. (1993), On the linear theory of the elastic pendulum, European Journal of Physics, 14, 132-135.
  6. [6]  Nunez-Yepez, H.N., Salas-Brito, A.L., Vargas, C.A., and Vicente, L. (1990), Onset of chaos in an extensible pendulum, Physics Letters A, 145, 101-105.
  7. [7]  Cuerno, R., Ranada, A.F., and Ruiz-Lorenzo, J.J. (1992), Deterministic chaos in the elastic pendulum: A simple laboratory for nonlinear dynamics, American Journal of Physics, 60(1), 73-79.
  8. [8]  van derWeele, J.P. and de Kleine, E. (1996), The order-chaos-order sequence in the spring-pendulum, Physica A, 228, 245-272.
  9. [9]  Markeyev, A.P. (2011), A case of plane rotations of an elastic pendulum, Journal of Applied Mathematics and Mechanics, 75, 510-507.
  10. [10]  de Sousa, M.C., Marcus, F.A., Caldas, I.L., and Viana, R.I. (2018), Energy distributions in intrinsically coupled systems: The spring pendulum system, Physica A, 509, 1110-1119.
  11. [11]  Lagrange, J.L. (1788), Mecanique Analytique (2 vol.) (edition Paris: Albert Balnchard;1965).
  12. [12]  Poincare, H. (1899), Methodes Nouvelles de la Mecanique Celeste, Vol.3. Paris: Gauthier-Villars.
  13. [13]  van der Pol, B. (1920), A theory of the amplitude of free and forced triode vibrations, Radio Review, 1, 701-710, 754-762.
  14. [14]  Fatou, P. (1928), Sur le mouvement d’un systeme soumis a des forces a courte periode. Bull. Soc. Math., 56, 98-139.
  15. [15]  Krylov, N.M. and Bogolyubov, N.N. (1935), Methodes approchees de la mecanique non-lineaire dans leurs application a l’Aeetude de la perturbation des mouvements periodiques de divers phenomenes de resonance s’y rapportant. Kiev: Academie des Sciences d’Ukraine (in French).
  16. [16]  Hayashi, C. (1964), Nonlinear oscillations in Physical Systems, New York: McGraw-Hill Book Company.
  17. [17]  Rand, R.H. and Armbruster, D. (1987), Perturbation Methods, Bifurcation Theory, and Computer Algebra. Applied Mathematical Sciences, no. 65, Springer-Verlag: New York.
  18. [18]  Garcia-Margallo, J. and Bejarano, J.D. (1987), A generalization of the method of harmonic balance, Journal of Sound and Vibration, 116, 591-595.
  19. [19]  Yuste, S.B. and Bejarano, J.D. (1989), Extension and improvement to the Krylov-Bogoliubov method that use elliptic functions, International Journal of Control, 49, 1127-1141.
  20. [20]  Coppola, V.T. and Rand, R.H. (1990), Averaging using elliptic functions: Approximation of limit cycle, Acta Mechanica, 81, 125-142.
  21. [21]  Lee, W.K. and Hsu, C.S. (1994), A global analysis of an harmonically excited spring-pendulum system with internal resonance, Journal of Sound and Vibration, 171, 335-359.
  22. [22]  Lee, W.K. and Park, H.D. (1999), Second-order approximation for chaotic responses of a harmonically excited spring-pendulum systems, International Journal of Non-linear Mechanics, 34, 749-757.
  23. [23]  Eissa, M., EL-Serafi, S.A., EL-Sheikh, M., and Sayed, M. (2003), Stability and primary simultaneous resonance of harmonically excited nonlinear spring pendulum system, Applied Mathematics and Computation, 145, 421-442.
  24. [24]  Alasty, A. and Shabani, R. (2006) Chaotic motions and fractal basin boundaries in spring-pendulum, Nonlinear Analysis: Real World Application, 7, pp.81-95.
  25. [25]  Gitterman, M. (2010), Spring pendulum: Parametric excitation vs an external force, Physica A, 389, 3101-3108
  26. [26]  Awrejcewicz, J., Starosta, R., and Sypniewska-Kaminska, G. (2018) Stationary and transient resonant response of a spring pendulum, IUTAM Symposium Analytical Methods in Nonlinear Dynamics, Procedia IUTAM 19, 201-208.
  27. [27]  Luo, A.C.J. (2015) Periodic flows in nonlinear dynamical systems based on discrete implicit maps, International Journal of Bifurcation and Chaos, 25(3), Article No.:1550044.
  28. [28]  Luo, A.C.J. and Guo, Y. (2015), A semi-analytical prediction of periodic motions in Duffing oscillator through mappings structures, Discontinuity, Nonlinearity, and Complexity, 4, 121-150.
  29. [29]  Guo, Y. and Luo, A.C.J. (2015), Periodic motions in a double-well Duffing oscillator under periodic excitation through discrete implicit mappings, International Journal of Dynamics and Control, 5(2), 223-238.