Skip Navigation Links
Journal of Vibration Testing and System Dynamics

C. Steve Suh (editor), Pawel Olejnik (editor),

Xianguo Tuo (editor)

Pawel Olejnik (editor)

Lodz University of Technology, Poland

Email: pawel.olejnik@p.lodz.pl

C. Steve Suh (editor)

Texas A&M University, USA

Email: ssuh@tamu.edu

Xiangguo Tuo (editor)

Sichuan University of Science and Engineering, China

Email: tuoxianguo@suse.edu.cn


Experimental Investigations of Energy Recovery from an Electromagnetic Pendulum Vibration Absorber

Journal of Vcibration Testing and System Dynamics 2(3) (2018) 209--219 | DOI:10.5890/JVTSD.2018.09.002

Krzysztof Kecik; Angelika Zaszczynska; Andrzej Mitura

Department of Applied Mechanics, Mechanical Faculty Engineering, Lublin University of Technology, Nadbystrzycka 36 St., Lublin, Poland

Download Full Text PDF

 

Abstract

The paper presents an experimental study of a special non−linear low frequency system dedicated to vibration mitigation and energy recovery. The dual−function design was based on an autoparametric vibration system, which consists of an oscillator with an added pendulum vibration absorber. Its structure includes an energy arvesting device: a levitating magnet in a coil. The pendulum motion shows simultaneously the effects of vibration reduction and energy recovery. The influences of the magnet−coil configurations, and load resistances on vibration reduction and energy harvesting ere studied in detail.

References

  1. [1]  International Energy Agency (IEA) (2012), Energy Policies of IEA Countries: The United Kingdom, 2012 Review, Paris: IEA Publications.
  2. [2]  Judkins, R.R., Fulkerson, W., and Sanghvi, M.K. (1993), The dilema of fossil fuel use and global climate change, Energy & Fuels, 7, 12-22.
  3. [3]  Sorrell, S. (2015), Reducing energy demand: A review of issues, challenges and approaches, Renewable and Sustainable Energy Reviews, 47, 74-82.
  4. [4]  Saha, C.R., O’Donnell, T., Wang, N., and McCloskey, P. (2008), Electromagnetic generator for harvesting energy from human motion, Sensors and Actuators A, 147, 248-253.
  5. [5]  Chen, Z., Guo, B., Yang, Y., and Cheng, C. (2014), Metamaterials-based enhanced energy harvesting: A review, Physica B Condensed Matter, 438, 1-8.
  6. [6]  Klub, H. (2011), High efficient micro electromechanical capacitive transducer for kinetic energy harvesting, Ph.D. Dissertation, Albert Ludwigs University Freiburg.
  7. [7]  Joyce, S. (2011), Development of an electromagnetic energy harvester for monitoring wind turbine blades, MSc Thesis, Virginia Tech, Blacksburg.
  8. [8]  Bebby, S., Tudor, M., and White, N. (2006), Energy harvesting vibration sources for microsystems applications, Measurement Science and Technology, 17, R175-R195.
  9. [9]  Jonnalagadda, A. (2007), Magnetic induction systems to harvest energy from mechanical vibrations, Massachusetts Institute Engineering, Massachusetts.
  10. [10]  Williams, C.B. and Yates, R.B. (1996), Analysis of a micro-electric generator for microsystems, Sensors and Actuators A, 52(1-3), 8-11.
  11. [11]  Stephen, N.G. (2006), On energy harvesting from ambient vibration, Journal of Sound and Vibration, 293(1- 2), 409-425.
  12. [12]  Yildirim, T., Ghayesh, M.H., Li, W., and Alici, G. (2017), A review on performance enhancement techniques for ambient vibration energy harvesters, Renewable and Sustainable Energy Reviews, 71, 435-449.
  13. [13]  Owens, B.A.M. and Man, B.P. (2012), Linear and nonlinear electromagnetic coupling models in vibrationbased energy harvesting, Journal of Sound and Vibration, 331, 922-937.
  14. [14]  Olaru, R., Gherca, R., and Petrescu, C. (2014), Analysis of a vibration energy harvester using permanent magnets, Revue Roumaine Des Sciences Techniques, 52(2), 131-140.
  15. [15]  Mann, B.P. and Sims, N.D. (2009), Energy harvesting from the nonlinear oscillations of magnetic levitation, Journal of Sound and Vibration, 319(1-2), 515-530.
  16. [16]  Kecik, K., Mitura, A., Lenci, S., and Warminski, J. (2017), Energy harvesting from a magnetic levitation system, International Journal of Structural Stability and Dynamics, 94, 200-206.
  17. [17]  Saravia, C.M., Ramirez, J.M., and Gatti, C.D. (2017), A hybrid numerical-analytical approach for modeling levitation based vibration energy harvesters, Sensors and Actuators A, 257, 20-29.
  18. [18]  Al-Halhouli, A., Kloub, H.A., Wegnerc, M., and Buttgenbach, A. (2015), Design and experimental investigations of magentic energy harvester at low resonance frequency, International Journal of Energy and Environmental Engineering, 10(1), 69-78.
  19. [19]  Kecik, K., Mitura, A., Sado, D., and Warminski, J. (2015), Magnetorheological damping and semi-active control of an autoparametric vibration absorber, Meccanica, 49(8), 1887-1900.
  20. [20]  Kecik, K. and Warminski, J. (2011), Dynamics of an autoparametric pendulum-like system with a nonlinear semiactive suspension, Mathematical Problems in Engineering, Article ID 451047, 1-15.
  21. [21]  Earnshaw, S. (1842), On the nature of the molecular forces which regulate the constitution of the luminiferous ether, Transactions of the Cambridge Philosophical Society, 7, 97-112.
  22. [22]  Soares, S.M.P., Ferreira, J.A.F., Simoes, J.A.O., Pascoal, R., Torrao, J., Xue, X., and Furlani, E.P. (2016), Magnetic levitation-based electromagnetic energy harvesting: a semi-analytical non-linear model for energy transduction, Scientific Reports, 6, Article ID 18579, 1-9.
  23. [23]  Kecik, K., Mitura, A., Warminski, J., and Lenci, S. (2018), Foldover effect and energy output from a nonlinear pseudo-maglev harvester, AIP Conference Proceedings, 1922(1), 1-7.
  24. [24]  Kecik, K., Brzeski, P., and Perlikowski, P. (2017), Non-Linear dynamics and optimization of a harvesterabsorber system, International Journal of Structural Stability and Dynamics, 17(5), 1-15.