Skip Navigation Links
Journal of Vibration Testing and System Dynamics

C. Steve Suh (editor), Pawel Olejnik (editor),

Xianguo Tuo (editor)

Pawel Olejnik (editor)

Lodz University of Technology, Poland

Email: pawel.olejnik@p.lodz.pl

C. Steve Suh (editor)

Texas A&M University, USA

Email: ssuh@tamu.edu

Xiangguo Tuo (editor)

Sichuan University of Science and Engineering, China

Email: tuoxianguo@suse.edu.cn


A Series of Symmetric Period-1 Motions to Chaos in a Two-degree-of-freedom van der Pol-Duffing Oscillator

Journal of Vcibration Testing and System Dynamics 2(2) (2018) 119--153 | DOI:10.5890/JVTSD.2018.06.003

Yeyin Xu; Albert C.J. Luo

Department of Mechanical and Industrial Engineering, Southern Illinois University Edwardsville, IL 62026-1805, USA

Download Full Text PDF

 

Abstract

In this paper, independent periodic motions in the two-degree-of- freedom (2-DOF) van der Pol-Duffing oscillator are investigated. From the semi-analytical method, the 2-DOF van der Pol-Duffing os- cillator is discretized to obtain implicit discrete mappings. From the implicit mapping structures, periodic motions varying with excita- tion frequency are obtained semi-analytically, and the corresponding stability and bifurcation are obtained by eigenvalue analysis. The frequency-amplitude characteristics of periodic motions are also pre- sented. Thus, from the analytical prediction, numerical simulations of periodic motions are performed for comparison of numerical and an- alytical results. The harmonic amplitude spectrums of periodic mo- tions are also presented for harmonic effects on the periodic motions. Through this study, the order of symmetric period-1 to chaotic mo- tions (i.e., 1(S)⊳1(A)⊳3(S)⊳2(A)⊳· · ·⊳m(A)⊳(2m+1)(S)⊳· · · ) (m→ꝏ) is discovered. Chaotic motions or catastrophe jumping phenomena between the two independent periodic motions exist. The indepen- dent periodic motions can be used for specific applications in phase locking, and such results can be useful to develop series of the van der Pol-Duffing circuits for applications.

References

  1. [1]  Lagrange, J.L. (1788), Mecanique Analytique (2 vol.) (edition Albert Balnchard: Paris, 1965).
  2. [2]  Poincare, H. (1899), Methodes Nouvelles de la Mecanique Celeste, Vol.3, Gauthier-Villars: Paris.
  3. [3]  Van der Pol, B. (1920) A theory of the amplitude of free and forced triode vibrations, Radio Review, 1, pp.701-710, pp.754-762.
  4. [4]  Fatou, P. (1928) Sur le mouvement d'un systeme soumis 'a des forces a courte periode, Bull. Soc. Math. 56, pp.98-139.
  5. [5]  Krylov, N.M. and Bogolyubov, N.N. (1935), Methodes approchees de la mecanique non-lineaire dans leurs application a l'Aeetude de la perturbation des mouvements periodiques de divers phenomenes de resonance s'y rapportant. Kiev: Academie des Sciences d'Ukraine; 1935 (in French).
  6. [6]  Hayashi, C. (1964), Nonlinear oscillations in Physical Systems, McGraw-Hill Book Company: New York.
  7. [7]  Nayfeh, A.H. (1973), Perturbation Methods, John Wiley: New York.
  8. [8]  Nayfeh, A.H. and Mook, D.T. (1979), Nonlinear Oscillation, John Wiley: New York.
  9. [9]  Maaita, J.O. (2016), A theorem on the bifurcations of the slow invariant manifold of a system of two linear oscillators coupled to a k-order nonlinear oscillator, Journal of Applied Nonlinear Dynamics, 5(2),193-197.
  10. [10]  Yamgoué, S.B. and Nana, B. Pelap, F.B. (2017), Approximate analytical solutions of a nonlinear oscillator equation modeling a constrained mechanical system, Journal of Applied Nonlinear Dynamics, 6(1),17-26.
  11. [11]  Shayak, B., Vyas, P. (2017), Krylov Bogoliubov type analysis of variants of the Mathieu equation, Journal of Applied Nonlinear Dynamics, 6(1): 57-77.
  12. [12]  Rajamani, S, Rajasekar, S.(2017), Variation of response amplitude in parametrically driven single Duffing oscillator and unidirectionally coupled Duffing oscillators, Journal of Applied Nonlinear Dynamics, 6(1): 121-129.
  13. [13]  Luo, A.C.J. (2012), Continuous Dynamical Systems, HEP/L&H Scientific: Beijing/Glen Carbon.
  14. [14]  Luo, A.C.J. and Huang, J.Z. (2012), Approximate solutions of periodic motions in nonlinear systems via a generalized harmonic balance, Journal of Vibration and Control, 18, 1661-1871.
  15. [15]  Luo, A.C.J. and Huang, J.Z. (2012), Analytical dynamics of period-m flows and chaos in nonlinear systems, International Journal of Bifurcation and Chaos, 22, Article No. 1250093 (29 pages).
  16. [16]  Luo, A.C.J. and Huang, J.Z. (2012), Analytical routines of period-1 motions to chaos in a periodically forced Duffing oscillator with twin-well potential, Journal of Applied Nonlinear Dynamics, 1, 73-108.
  17. [17]  Luo, A.C.J. and Huang, J.Z. (2012), Unstable and stable period-m motions in a twin-well potential Duffing oscillator, Discontinuity, Nonlinearity and Complexity, 1, 113-145.
  18. [18]  Luo, A.C.J. and Lakeh, A.B. (2013), Analytical solutions for period-m motions in a periodically forced van der Pol oscillator, International Journal of Dynamics and Control, 1, pp.99-115.
  19. [19]  Wang, Y.F. and Liu, Z.W. (2015), A matrix-based computational scheme of generalized harmonic balance method for periodic solutions of nonlinear vibratory systems, Journal of Applied Nonlinear Dynamics, 4(4), 379-389.
  20. [20]  Luo, H. andWang, Y. (2016), Nonlinear dynamics analysis of a continuum rotor through generalized harmonic balance method, Journal of Applied Nonlinear Dynamics, 5(1), 1-31.
  21. [21]  Luo, A.C.J. (2014), Toward Analytical Chaos in Nonlinear Systems, Wiley: New York.
  22. [22]  Luo, A.C.J. (2014), Analytical Routes to Chaos in Nonlinear Engineering, Wiley: New York.
  23. [23]  Greenspan, D. (1972), Numerical approximation of periodic solutions of van der Pol' equation, Journal of Mathematical Analysis and Applications, 39, 574-579.
  24. [24]  Sanjuan, M.A.F. (1996), Symmetry-restoring crises, period-adding and chaotic transitions in the cubic van der pol oscillator, Journal of Sound and Vibration, 193, 863-875.
  25. [25]  Luo, A.C.J. (2015), Periodic flows in nonlinear dynamical systems based on discrete implicit maps, Interna- tional Journal of Bifurcation and Chaos, 25(3), Article No.:1550044.
  26. [26]  Luo, A.C.J. and Guo, Y. (2015), A semi-analytical prediction of periodic motions in Duffing oscillator through mappings structures, Discontinuity, Nonlinearity, and Complexity, 4, 121-150.
  27. [27]  Guo, Y. and Luo, A.C.J. (2017), Periodic motions in a double-well Duffing oscillator under periodic excitation through discrete implicit mappings, International Journal of Dynamics and Control, 5(2), 223-238.
  28. [28]  Guo, Y. and Luo, A.C.J. (2016), Periodic Motions to Chaos in Pendulum, International Journal of Bifurcation and Chaos, 26, 1650159 (64 pages).
  29. [29]  Guo, Y. and Luo, A.C.J. (2017) Routes of periodic motions to chaos in a periodically forced pendulum, International Journal of Dynamics and Control, 5(3), 551-569.
  30. [30]  Guo, Y., Luo, A.C.J. (2017), Complete bifurcation trees of a parametrically driven pendulum, Journal of Vibration Testing and System Dynamics,1, 93-134.
  31. [31]  Luo, A.C.J. (2016), Discretization and Implicit Mapping Dynamics, Springer/Higher Education Press: Hei- delberg/Beijing.
  32. [32]  Luo, A.C.J. and Xing, S.Y. (2016), Symmetric and asymmetric period-1 motions in a periodically forced, time-delayed, hardening Duffing oscillator. Nonlinear Dynamics, 85, 1141-1166.
  33. [33]  Luo, A.C.J. and Xing, S.Y. (2016), Multiple bifurcation trees of period-1 motions to chaos in a periodically forced, time-delayed, hardening Duffing oscillator, Chaos, Solitons and Fractals, 89, 405-434.
  34. [34]  Luo, A.C.J. and Xing, S.Y. (2017), Time-delay effects on periodic motions in a periodically forced, time- delayed, hardening duffing oscillator, Journal of Vibration Testing and System Dynamics, 1, 73-91.
  35. [35]  Xing, S. and Luo, A.C.J. (2017), Towards infinite bifurcation trees of period-1 motions to chaos in a time- delayed, twin-well Duffing oscillator, Journal of Vibration Testing and System Dynamics, 1, 353-392.
  36. [36]  Luo, A.C.J. (2017), Memorized Discrete Systems and Time-delay, Springer: New York.