Skip Navigation Links
Journal of Vibration Testing and System Dynamics

C. Steve Suh (editor), Pawel Olejnik (editor),

Xianguo Tuo (editor)

Pawel Olejnik (editor)

Lodz University of Technology, Poland

Email: pawel.olejnik@p.lodz.pl

C. Steve Suh (editor)

Texas A&M University, USA

Email: ssuh@tamu.edu

Xiangguo Tuo (editor)

Sichuan University of Science and Engineering, China

Email: tuoxianguo@suse.edu.cn


Theory and Analysis of Impulsive Type Pantograph Equations with Katugampola Fractional Derivative

Journal of Vibration Testing and System Dynamics 2(1) (2018) 9--20 | DOI:10.5890/JVTSD.2018.03.002

D. Vivek; K. Kanagarajan, S. Harikrishnan

Department of Mathematics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore-641020, India

Download Full Text PDF

 

Abstract

In this paper, we investigate the existence, uniqueness and Ulam stability of solutions for impulsive type pantograph equations with Katugampola fractional derivative. The arguments are based upon the Banach contraction principle and Schaefer’s fixed point theorem.

References

  1. [1]  Hilfer, R. (1999), Application of fractional Calculus in Physics, World Scientific, Singapore.
  2. [2]  Podlubny, I. (1999), Fractional differential equations, Academic Press, San Diego.
  3. [3]  Katugampola, U.N. (2011), New approach to generalized fractional derivatives, J. Math. Anal. Appl., 218(3), 860-865.
  4. [4]  Katugampola, U.N. (2011), New approach to a generalized fractional integral, Appl. Math. Comput., 218, 860-865.
  5. [5]  Katugampola, U.N. (2014), Existence and uniqueness results for a class of generalized fractional differential equations, arXiv:1411.5229, pp. 1-9.
  6. [6]  Vivek, D., Kanagarajan, K., and Harikrishnan, S., (2017), Existence and uniqueness results for pantograph equations with generalized fractional derivative, J. Nonlinear Anal. Appl., 2, 105-112.
  7. [7]  Vivek, D., Kanagarajan, K., and Harikrishnan, S. (2017), Existence and uniqueness results for implicit differential equations with generalized fractional derivative, J. Nonlinear Anal. Appl., (Accepted articleID:2017/jnaa-00370).
  8. [8]  Vivek, D., Kanagarajan, K., and Sivasundaram, S. (2017), Theory and analysis of nonlinear neutral pantograph equations via Hilfer fractional derivative, Nonlinear Stud., 24(3), 699-712.
  9. [9]  Rahimkhani, P., Ordokhani, Y., and Babolian, E. (2017), Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet, J. Comput. Appl. Math., 309, 493-510.
  10. [10]  Trif, D. (2012), Direct operatorial tau method for pantograph-type equations, Appl. Math. Comput., 219(4), 2194-2203.
  11. [11]  Balachandran, K., Kiruthika, S., and Trujillo, J.J. (2013), Existence of solutions of nonlinear fractional pantograph equations, Acta Math. Sci., 33B, 1-9.
  12. [12]  Vivek, D., Kanagarajan, K., and Sivasundaram, S. (2016), Dynamics and stability of pantograph equations via Hilfer fractional derivative, Nonlinear Stud., 23(4), 685-698.
  13. [13]  Guan, K.Z., Wang, Q.S., Wang, Q.S., and He, X.B. (2012), Oscillation of a pantograph differential equation with impulsive perturbations, Appl. Math. Comput., 219, 3147-3153.
  14. [14]  Benchohra, M., Henderson, J., and Ntouyas, S.K. (2006), Impulsive differential equations and inclusions, Hindawi Publishing Corporation, 2, New York.
  15. [15]  Graef, J.R., Henderson, J., and Ouahab, A. (2013), Impulsive differential inclusions, A Fixed Point Approch, De Gruyter, Berlin/Boston.
  16. [16]  Ndiyo, E.E. (2017), Existence result for solution of second order impulsive differential inclusion to dynamic evolutionary processes, Am. J. Appl. Math., 7(2), 89-92.
  17. [17]  Zhang, G.L., Song, M.H., and Liu, M.Z., Asymptotic stability of a class of impulsive delay differential equations, Journal of Applied Mathematics, 2012, Article ID 723893, 9 pages, 2012. DOI:10.1155/2012/723893.
  18. [18]  Deepak, D., Ashok, K., and Ganga R.G. (2017), Existence of solution to fractional order delay differential equations with impulses, Advanced Math. Models and Applications, 2, 155-165.
  19. [19]  Wang, J.R., Zhou, Y., and Michal, F. (2012), Nonlinear impulsive problems for fractional differential equations and Ulam stability, Comput. Math. Appl., 64, 3389-3405.
  20. [20]  Wang, J.R., Michal, F., and Zhou, Y. (2016), A survey on impulsive fractional differential equations, Frac. Cal. Appl. Anal., 19, 825-1052.
  21. [21]  Nemat, N. (2017), Existence and multiplicity of solutions for impulsive fractional differential equations, Mediterr. J. Math.,14(85), 1-17.
  22. [22]  Benchohra, M. and Bouriah, S. (2015), Existence and stability results for nonlinear boundary valur problem for implicit differential equations of fractional order, Moroccan J. Pure and Appl. Anal., 1(1), 22-37.
  23. [23]  Ye, H., Gao, J., and Ding, Y. (2007), A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328, 1075-1081.
  24. [24]  Bainov, D.D. and Hristova, S.G. (1997), Integral inequalities of Gronwall type for piecewise continuous functions, J. Appl. Math. Stoc. Anal., 10, 89-94.